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Department of Computer Science
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ABSTRACT

This thesis explores White Balance (WB) correction by modeling lighting as a style fac-

tor through distribution-based approaches in both architectural design and optimization

frameworks. Three novel methods are proposed to address the challenges of complex

illumination scenarios. The first approach, Style WB, employs a UNet-like architecture

with style modulation to effectively remove illumination-related style information, which

achieves robust correction with enhanced spatial consistency. The second approach, FDM

WB, introduces feature distribution matching within the Uformer architecture, which en-

ables precise alignment of global and local illumination features for WB correction. Both

approaches are evaluated on the Cube+ dataset and a synthetic multi-illuminant bench-

mark, and they demonstrate substantial improvements in WB correction across diverse

lighting conditions. The third approach, FDM Loss, defines an optimization framework

leveraging the [CLS] token of Vision Transformers to achieve exact matching of all mo-

ments between the predicted and ground truth images, capturing higher-order statistics

essential for managing intricate lighting variations. This approach delivers reduced Mean

Angular Error (MAE) and consistent illumination correction on the LSMI dataset across

three camera setups. While these methods advance WB correction, integrating deter-

ministic mapping mechanisms, such as DeNIM, in resource-constrained environments

or leveraging diffusion-based models and neural ODEs could further enhance perfor-

mance, particularly in handling complex lighting scenarios. This work redefines the role

of distribution-based modeling in addressing illumination challenges, setting a foundation

for future innovations in image restoration.
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ÖZET

Bu tez, ışıklandırmayı bir stil faktörü olarak modelleyerek, hem mimari tasarım hem de

optimizasyon çerçeveleri açısından dağılım tabanlı yaklaşımlar aracılığıyla Beyaz Den-

gesi (BD) düzeltmesini incelemektedir. Karmaşık ışıklandırma senaryolarındaki zorluk-

ları ele almak için üç yeni yöntem önerilmektedir. İlk yöntem, Style WB, ışıklandırmaya

bağlı stil bilgisini kaldırmak için stil modülasyonuna sahip UNet benzeri bir mimari kul-

lanmakta ve geliştirilmiş mekânsal tutarlılığı artırırken güçlü bir düzeltme sağlar. İkinci

yöntem, FDM WB, Uformer mimarisine ışıklandırmanın bütüncül ve yerel özniteliklerinin

hassas şekilde hizalayan bir dağılım eşleme mekanizması entegre ederek, BD düzeltmesi

için önemli iyileştirmeler sunar. Her iki yöntem de Cube+ veri seti ve sentetik çoklu

ışıklandırma içeren değerlendirme kümesi üzerinde test edilmiş ve çeşitli ışıklandırma

koşulları altında başarı göstermiştir. Üçüncü yöntem, FDM Loss, Vision Transform-

ers mimarisinde yer alan [CLS] token’ı kullanarak, tahmin edilen ve gerçek görüntüler

arasındaki tüm dağılım momentlerini tam eşleştiren bir optimizasyon çerçevesi tanımlar

ve karmaşık ışıklandırma varyasyonlarını modellemek için gerekli olan yüksek mertebe-

den istatistikleri yakalar. Bu yöntem, üç farklı kamera ile çekilmiş resimler içeren LSMI

veri seti üzerinde daha düşük ortalama açısal hata değerleri ve tutarlı BD düzeltmesi

sağlamaktadır. Bu yöntemler BD düzeltmesi performansını geliştirirken, kaynak kısıtlı

ortamlarda DeNIM gibi deterministik piksel eşleme mekanizmalarının entegrasyonu ya

da karmaşık ışıklandırma senaryolarını ele almak için difüzyon tabanlı modeller ve nöral

ADD’lerin kullanımıyla performansın artırılabileceği öngörülmektedir. Bu çalışma, zorlu

ışıklandırma senaryolarında dağılım tabanlı modellemenin rolünü yeniden tanımlamakta

ve görüntü iyileştirme alanında gelecekteki yeniliklere sağlam bir temel oluşturmaktadır.

Anahtar Kelimeler: Beyaz Dengesi, Stil faktörü, Öznitelik istatistiği, Işıklandırma
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1. INTRODUCTION

1.1 Context and Motivation

Accurate reproduction of colors under varying lighting conditions remains a key

challenge in digital image processing, especially when dealing with real-world scenes

where lighting sources can vary widely [10]. Auto White-Balance (AWB) correction

plays a critical role in ensuring that the colors are perceived correctly under different

illuminants, making it one of the most important tasks in the Image Signal Processor (ISP)

pipeline. This correction is essential to obtain images that are perceived accurately by the

human eye, maintaining natural color representation in diverse lighting conditions [11].

However, while effective under controlled conditions, traditional AWB methods often

fail to deliver consistent results in multi-illuminant environments or low-light conditions,

leading to unnatural color casts and poor visual quality.

The foundation of White Balance (WB) correction lies in adjusting the illuminant

color mapping or distributions in an image so that white objects appear white, regard-

less of ambient lighting. However, the challenge lies in how to model and correct the

influence of different light sources on an image’s illuminant color balance. Each light

source, whether natural or artificial, introduces a different spectral signature, which can

distort colors in complex and unpredictable ways [12]. This distortion often appears as

unwanted color casts that must be removed to achieve a natural and balanced image. The

challenge is further compounded when dealing with multi-illuminant environments [2],

where various light sources may light different regions of an image, each with its own

color temperature. For example, a room with both natural sunlight and artificial incan-

descent lighting can create a mixture of warm and cool reflects in different parts of the

scene.
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Figure 1.1: Different spectral signatures of the light sources in a sample scene.

Figure 1.1 demonstrates how different spectral signatures of the light sources can

alter the overall appearance of a scene. White balance correction methods aim to neutral-

ize the color casts introduced by varying illumination sources, resulting in a balanced and

visually accurate color representation under different lighting conditions. The complexity

increases as the intensity and direction of these light sources vary. Traditional AWB meth-

ods often apply a global correction, adjusting the entire image based on a single averaged

lighting estimate, which assumes that illumination is uniform. However, this assumption

rarely holds in real-world scenarios. These methods typically rely on simple statistical

measures, such as the Gray-World assumption [13], which assumes that the average color

of a scene should be gray, or histogram-based approaches [14, 15]. Although computa-

tionally efficient, these methods lack the flexibility to adapt to the nuanced variations in

lighting, often resulting in only partially corrected color casts or, in some cases, making

them worse.
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1.1.1 Deep Learning Era for White Balance Correction

Recent advances in deep learning have introduced more sophisticated approaches

to WB correction [2, 16, 17, 1, 18, 19, 20, 21, 22, 23, 24]. These methods leverage

large datasets [12, 1, 25, 26, 8] to learn complex mappings between input images and

the desired white-balanced output, offering flexibility and adaptability beyond traditional

methods. However, despite their successes, one critical limitation is that many of these

models do not explicitly account for the underlying distribution characteristics, which are

essential for accurate color correction.

Deep learning models, typically based on Convolutional Neural Network (CNN)

[27] or attention-based architectures like Transformers [3], can learn to identify the effects

of lighting on color distributions by directly mapping input images to corrected outputs.

These models handle multi-illuminant environments and complex lighting variations by

learning both global and local features, enabling them to apply corrections based on the

conditions of each image.

A key advantage of deep learning models is their ability to perform end-to-end

learning. These models do not require manual adjustment of parameters; instead, they ad-

just the color balance across the image using large labeled datasets. This allows for more

accurate corrections, especially in cases where traditional methods struggle [24]. How-

ever, a significant limitation of current deep learning approaches is that they typically rely

on learned features extracted implicitly through convolutions or attention mechanisms,

without direct reference to the distributional properties of color, which play a crucial role

in maintaining perceptual consistency across lighting conditions.

For example, when dealing with multi-illuminant environments, a model that does

not explicitly consider feature distributions may apply corrections based solely on learned

patterns from the training data, without understanding the statistical shifts introduced by

different light sources. This can result in overcorrection or undercorrection, especially
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Figure 1.2: Simulated rendering results with different color temperatures (i.e., Shade and
Tungsten) and the white-balance corrected version.

when the training data predominantly features single illumination scenarios. Without

an awareness of how multiple illuminants distort the color distributions, the model may

struggle to generalize in more complex lighting conditions.

1.1.2 Feature Distributions as Style Factors

In the context of illumination and white balance, feature distributions refer to the

statistical properties of an image’s color channels or higher-level features that describe

how illuminant colors are represented. These distributions are influenced by the lighting

conditions in which an image is captured, and adjusting them can significantly improve

the perceived color balance. This concept introduces the main idea of this study: feature

distributions can represent or model lighting as a style factor [24, 28, 29].

Lighting is a dominant style factor because it directly affects the distribution of

color values across an image. The type, intensity, and color temperature of the light source

can drastically shift the appearance of objects, making whites appear warm (e.g., orange)

or cool (e.g., blue) and distorting other colors accordingly. Figure 1.2 demonstrates the

effect of different lighting conditions on a scene, showing how lighting can introduce

unwanted color casts that need correction. Furthermore, different lighting conditions can

alter the way camera sensors perceive colors [22], requiring device-dependent algorithms

for image acquisition and post-processing algorithms to ensure accurate color perception.
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To correct these lighting-induced distortions, WB correction aims to align the

color distributions with a neutral reference, ensuring that the colors in the scene are rep-

resented accurately. This requires understanding how lighting conditions affect the color

distribution and adjusting them accordingly. By treating feature distributions as style fac-

tors, it becomes possible to model lighting and illumination environments, allowing for

their manipulation or mitigation of unwanted casts using neural networks.

1.1.3 Proposed Approach: FDM for WB Correction

To address the limitations of both traditional and recent AWB methods, this dis-

sertation introduces a novel approach that models lighting as a style factor and corrects

white balance through feature distribution matching. Rather than relying on global illumi-

nation estimates or heuristic-based assumptions, this method formulates WB correction

as a feature alignment problem, ensuring that color distributions are adaptively corrected

based on learned representations of illuminant styles.

The proposed framework leverages deep learning architectures to explicitly model

the statistical properties of feature distributions influenced by lighting conditions. In par-

ticular, it employs Exact Feature Distribution Matching (EFDM) [30] to match the em-

pirical distributions of image features, aligning them with a white-balanced reference.

This approach allows for precise color correction by capturing higher-order statistics be-

yond simple mean and variance adjustments, addressing complex illuminant shifts that

traditional methods struggle with.

A key advantage of this methodology is its robustness in multi-illuminant envi-

ronments, where different light sources interact within the scene. Unlike prior methods

that rely on a single illuminant assumption, the proposed approach dynamically learns

and applies per-region corrections, preserving spatial consistency and reducing overcor-

rection artifacts. This is achieved through a combination of architectural improvements,
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such as style modulation within a UNet-like framework (Style WB) and feature distribu-

tion matching integrated into a Transformer-based architecture (FDM WB). Furthermore,

this study introduces a distribution-based loss function (FDM Loss), which ensures that

the predicted white-balanced image adheres closely to the ground-truth distributions in

various datasets, including Cube+ and Large-scale Multi-Illuminant (LSMI).

By adopting a feature distribution matching perspective, this dissertation not only

enhances the adaptability of WB correction but also contributes to a broader understand-

ing of how lighting conditions can be represented and corrected within deep learning

frameworks. The proposed methods set a new benchmark for robust and perceptually ac-

curate WB correction, which offers a scalable and efficient solution for real-world imag-

ing applications.

1.2 Research Objectives

This dissertation aims to establish a robust and adaptable framework for WB

correction by modeling lighting conditions as style factors and employing deep learn-

ing architectures that integrate feature distribution matching. Traditional WB correc-

tion techniques often struggle with complex illumination scenarios, particularly in multi-

illuminant environments where standard statistical assumptions break down. This study

proposes an alternative paradigm by treating lighting as a style factor and developing a

novel feature alignment methodology that ensures perceptually consistent WB correction

across diverse imaging conditions.

The objectives of this dissertation are structured to address both theoretical and

practical challenges in WB correction, focusing on enhancing accuracy, adaptability, and

computational efficiency. The research unfolds through the following core objectives:

i. Establishing a Style Factor Learning Strategy for WB Correction

The primary objective of this study is to develop a learning framework that models
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lighting as a style factor by leveraging EFDM. This framework is designed to learn

and infer the underlying statistical properties of different illuminants, allowing for

adaptive WB correction. By incorporating feature alignment techniques, such as

adaptive normalization mechanisms and deep feature statistics, the model can effec-

tively neutralize undesired illumination-induced color distortions while preserving

the natural structure of the scene.

ii. Addressing the Limitations of Existing WB Correction Approaches

A fundamental challenge in existing deep learning-based AWB methods is their

reliance on implicit feature learning without explicitly considering feature distri-

bution shifts caused by complex lighting variations. This dissertation aims to sys-

tematically investigate the limitations and proposes a more structured approach by

explicitly incorporating distribution matching into the optimization framework.

iii. Enhancing Multi-Illuminant Robustness through Feature Distribution Matching-

Based Optimization

Traditional methods often fail in multi-illuminant scenarios, where multiple light

sources with different spectral properties create regionally varying color casts. The

proposed framework aims to address this limitation by incorporating a feature dis-

tribution matching-based objective function into the optimization process. By en-

forcing distribution-level consistency, the framework can reduce the risk of overcor-

rection, undercorrection, or spatial inconsistencies in complex lighting conditions.

iv. Conducting Extensive Experimental Validation for Performance Assessment

This study aims to rigorously evaluate the effectiveness of the proposed WB cor-

rection framework through extensive experiments on benchmark datasets such as

Cube+ and LSMI, covering single- and multi-illuminant conditions. In addition,

qualitative assessments will be conducted to analyze perceptual consistency and
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color fidelity in various lighting scenarios. The objective is to demonstrate the ad-

vantages of feature distribution matching-based WB correction over both traditional

and recent deep learning-based approaches.

v. Developing a Computationally Efficient and Resolution-Independent Version

This study also aims to design a WB correction framework that maintains robust

performance across varying image resolutions while ensuring computational effi-

ciency for real-time applications. To achieve this, we explore resolution-independent

feature learning strategies and integrate deterministic neural illumination mapping

to optimize feature representations while minimizing computational overhead. The

objective is to improve scalability to enable deployment in resource-constrained

environments such as edge devices and mobile imaging applications.

1.3 Thesis Contribution

This dissertation presents significant contributions to the field of WB correction

by introducing a novel paradigm that models lighting as a style factor, influencing the

color distribution of a scene. By incorporating feature distribution matching into the

optimization process, this approach enhances the robustness, accuracy, and adaptability

of WB correction, particularly in complex and multi-illuminant environments. The key

contributions of this work are as follows.

i. Style Factor Learning for WB Correction

This dissertation establishes a novel approach to WB correction by treating light-

ing as a style factor that influences the color distribution of the entire scene. By

leveraging this perspective, the proposed method enables adaptive color correction

in diverse illumination conditions, significantly improving robustness in complex

lighting environments.
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ii. Feature Distribution Matching-Based WB Correction

A key contribution of this work is the integration of EFDM into the WB correction

pipeline. This approach ensures that the color distribution of an input image is ex-

actly aligned with an ideal white-balanced reference at multiple stages of the neural

network architecture and optimization process to improve the overall accuracy and

perceptual consistency of WB correction.

iii. A Robust Framework for Multi-Illuminant Environments

This dissertation introduces a feature distribution-based objective function that ex-

plicitly accounts for complex lighting interactions to effectively handle variations

in illuminant spectral properties.

iv. Enhanced Accuracy and Real-World Adaptability

The proposed approach surpasses state-of-the-art WB correction methods by inte-

grating deep learning architectures with style-based illumination modeling. Exper-

imental validation demonstrates that the proposed methods achieve superior accu-

racy and perceptual consistency across multiple benchmarks, making them applica-

ble to imaging scenarios where existing WB correction methods fall short.

v. Deterministic Neural Illumination Mapping for Efficient Feature Learning

To improve computational efficiency and enable deployment in resource-constrained

environments, this dissertation explores the application of deterministic pixel map-

ping for WB correction. This approach optimizes feature learning by ensuring

resolution-independent processing, reducing computational overhead while main-

taining robust correction across diverse imaging conditions.

vi. New Paradigms for Style Representation in Image Restoration

By formulating lighting as a style factor and integrating feature distribution match-

ing into neural network architectures and the optimization process, this dissertation
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introduces a new paradigm for WB correction. This contribution extends beyond

WB correction, paving the way for future research in image restoration and en-

hancement, where feature distribution modeling can be applied to a broader range

of imaging tasks.

The remainder of the dissertation is structured as follows. Section 2 provides an

overview of the ISP pipeline, focusing on WB correction, feature distributions, and distri-

bution matching. Section 3 reviews traditional AWB methods and explores the evolution

of style-based learning and deep learning approaches in image processing. Section 4

presents the proposed methodologies, namely Style WB and Feature Distribution Match-

ing White Balancing (FDM WB), along with the extended version of FDM WB, including

improvements in architecture and optimization. Section 5 details the training setup, in-

cluding datasets, training strategies, and hyperparameters, as well as the experimental

setup and evaluation metrics. It also presents the experimental results, comparing the pro-

posed methods to deep learning-based WB correction methods on various datasets, with

quantitative and qualitative evaluations. Section 6 covers additional applications, includ-

ing DeNIM for efficient feature learning and the impact of the proposed methods on night

photography, and the potential future of the main idea using advanced methods, such as

diffusion-based techniques and flow matching.
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2. BACKGROUND

2.1 Style Factors and Representation

In perceptual systems, style factors refer to extrinsic attributes that alter the ap-

pearance of an image without modifying its core content. These factors can include

elements such as lighting, texture, and color tone, which are often separated from the

content that represents structural or intrinsic information in the scene. Human percep-

tual systems, and increasingly artificial models, are designed to distinguish between these

style and content factors when interpreting visual information [31].

Examples of this distinction are found in daily life: words spoken with an unfa-

miliar accent (i.e., style) still convey the same meaning (i.e., content), letters written in

different handwriting styles retain their textual meaning, and objects illuminated under

varying lighting conditions are perceived consistently despite changes in their visual ap-

pearance. These illustrate how style factors are integrated into the content of audio, text,

and images. In visual perception, lighting is a key style factor that modifies how objects

are perceived, although the objects themselves remain unchanged.

Earlier studies have approached the separation of style from content using com-

putational models that provide expressive representations of these factors [32, 33, 34,

31]. These models describe factors as well-defined representations of observations. In

the context of natural images, separating content from style is particularly challenging.

Convolution-based neural architectures are effective in producing generic feature repre-

sentations that allow content and style to be processed independently. This ability has

been applied to various tasks, such as texture recognition and synthesis [35, 36, 37, 38],
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artistic style classification [39, 40, 41], style transfer [42, 43, 44, 30], and generative im-

age synthesis [45, 46, 47]. These works demonstrate that style representation can be dis-

tilled by forming specific feature spaces for images through learning objectives designed

to isolate these extrinsic factors.

The concept of style can be interpreted in different ways depending on the domain.

For example, in face images, style might represent attributes such as age, type of haircut,

or whether the person is wearing glasses. These style factors can be extracted as affine

parameters within a feature space, packed together to represent different visual attributes.

The mapping network extracts these parameters using random vectors or features from

pretrained networks (e.g., VGG [48], ViT [4]) to manipulate the image style. In another

example, style may refer to the painting style of an artist [42] or filters applied to a pho-

tograph [41], where the style factor is captured through the correlation between features,

allowing direct manipulation of style or the removal of applied filters.

Based on these insights, any disruptive or modifying factor that influences the

entire image can be modeled as a style factor. This notion is central to this study, where

it extends the concept of style to the domain of lighting and illumination. This study

conducted on AWB correction proposes treating lighting as a style factor that affects the

color distribution of an image. By modeling lighting in this way, the AWB correction

process becomes one of identifying and neutralizing this style factor to correct the image

color balance without affecting the content [24].

This approach enables deep learning models to handle color distortions by recog-

nizing and adjusting lighting as a style factor and then aligning the color distributions of

the image with a neutral reference. By addressing lighting as a stylistic attribute, we can

achieve robust AWB correction that handles complex, multi-illuminant environments—an

area where traditional AWB methods often struggle. This approach not only ensures ac-

curate color correction but also maintains perceptual consistency, aligning the output with
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human visual expectations. In essence, modeling lighting as a style factor creates a pow-

erful framework for robust AWB correction, forming the foundation for this dissertation’s

contributions to real-world image processing challenges.

2.2 Distribution Alignment

In image processing, effectively handling variations in color distribution caused

by different lighting conditions is critical to achieve perceptual consistency. Techniques

like feature distribution alignment and matching have been utilized in various domains

within deep learning; however, their usage in image processing-related tasks (e.g., AWB

correction) remains relatively unexplored. This dissertation introduces a novel applica-

tion of these methods for AWB correction, which demonstrates how matching the feature

distributions of an image during the optimization of learning in deep architectures can

significantly improve color correction under varying illumination conditions. By treating

lighting as a style factor that influences the overall color distribution, we leverage fea-

ture distribution matching to ensure robust corrections that align with human perceptual

expectations.

2.2.1 Deep Feature Statistics

Deep feature statistics refer to the quantitative measures of the feature representa-

tions extracted by pre-trained deep learning models, which describe the distribution and

variability of features represented in the high-dimensional latent space. These statistics

encompass various metrics, such as mean, variance, skewness, kurtosis, and higher-order

moments, along with the correlation and co-occurrence patterns among features. These

measures offer a deep understanding of how visual features are distributed and how they

vary under different conditions.

For a feature map F ∈ RC×H×W , where C represents the number of channels,
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and H ×W is the spatial resolution, the channel-wise mean µc and variance σc for each

channel c are computed as

  \mu _c = \frac {1}{HW} \sum _{h=1}^{H} \sum _{w=1}^{W} F_{c, h, w} 










 (2.1)

  \sigma _c = \frac {1}{HW} \sum _{h=1}^{H} \sum _{w=1}^{W} (F_{c, h, w} - \mu _c)^2 










 
 (2.2)

where µc and σc represent the first and second-order statistics (i.e., mean and variance),

respectively, which describe the distribution of feature values in a given channel.

In addition to mean and variance, skewness γ1 and kurtosis γ2 provide higher-

order insights into the feature distributions. The former describes the asymmetry of the

distribution, while the latter measures the tailedness or extremity of values.

The skewness γ1 of a feature map F can be calculated as

  \gamma _1 = \frac {1}{HW} \sum _{h=1}^{H} \sum _{w=1}^{W} \left ( \frac {F_{c, h, w} - \mu _c}{\sigma _c} \right )^3 











 





(2.3)

The kurtosis γ2, which measures the tailedness of the distribution, is defined as

  \gamma _2 = \frac {1}{HW} \sum _{h=1}^{H} \sum _{w=1}^{W} \left ( \frac {F_{c, h, w} - \mu _c}{\sigma _c} \right )^4 - 3 











 





  (2.4)

Here, the subtraction of 3 normalizes the kurtosis so that the kurtosis of a normal

distribution equals zero, which makes it easier to compare different distributions. Skew-

ness and kurtosis allow for a more detailed understanding of the distribution of feature

maps beyond what mean and variance provide. This makes them valuable for fine-grained

adjustments in tasks related to the color space distributions.

Using these low-order feature statistics, deep learning models can capture how

style factors such as artistic painting style or dominant pattern affect the overall appear-

ance of an image [42, 37]. Additionally, higher-order moments such as skewness and

kurtosis can provide further insight into the asymmetry and extremity of the tails of the
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feature distributions, which make them useful for fine-grained adjustments in learning the

representation of the style factor [30].

These statistics serve as the foundation for methods like feature alignment and dis-

tribution matching, which aim to correct shifts in any distribution introduced by varying

conditions for different factors. As discussed in the following sections, these statistics also

provide valuable insight into how lighting conditions, as style factors, affect the color dis-

tribution in an image. Deep learning models rely on these statistics to represent the color

characteristics of the scene, and any shifts in the distribution can be attributed to lighting

effects, which must be corrected for accurate AWB correction.

2.2.2 Feature Alignment

Feature alignment is widely used in deep learning methods to reduce disparities

between feature distributions caused by input variations. Techniques such as batch nor-

malization [49], layer normalization [50], and instance normalization [51] are common

methods for aligning features in different domains and ensure that feature distributions

remain consistent during training and inference. A specialized technique, Adaptive In-

stance Normalization (AdaIN) [44], goes one further step by separating and aligning the

mean and standard deviation in the feature maps between the inputs of content and style.

This approach allows for the adaptive transformation of specific features in the latent

space while maintaining other aspects of the representation.

AdaIN is mathematically defined as

  \text {AdaIN}(x, y) = \sigma (y) \left ( \frac {x - \mu (x)}{\sigma (x)} \right ) + \mu (y)   







  (2.5)

where x and y are the feature maps of the content image and the style input, respectively.

This normalization technique aligns the channel-wise mean µ and variance σ of the con-

tent feature maps to those of the style feature maps.

Our foundational work [41] introduces the reverse style transfer technique, in
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which the style information injected into the content is systematically removed or mod-

ified. This preliminary idea, which forms the basis of the current thesis, incorporates

Adaptive Instance Normalization (AdaIN) across all layers of the feature encoder while

adjusting the learning objectives to treat internal style factors, such as Instagram filters,

as external elements to be discarded or corrected. This method proved to be particularly

useful in tasks such as filter removal or image restoration, where style factors, such as

Instagram filters, can be neutralized to restore content in the original scene.

The development of this idea highlighted the limitations of the Gaussian assump-

tions investigated in our first prior work in the WB correction [24], which often oversim-

plify real-world scenarios. These assumptions fail to capture the fine-grained variations

introduced by the distinctive style factors. To address these challenges, the thesis extends

these foundational works by introducing the use of EFDM to AWB correction, which is

a more advanced technique that relaxes the Gaussian assumption and matches the entire

empirical distribution of feature maps [28, 29], as detailed in the following section.

2.2.3 Exact Feature Distribution Matching (EFDM)

To address the limitations of Gaussian-based assumptions made by methods such

as [44], EFDM [30] was proposed as a more advanced technique for feature alignment.

EFDM focuses on directly matching Empirical Cumulative Distribution Functions (eCDF)

of the feature maps, thus ensuring that not only the first- and second-order statistics (that

is, mean and variance) but also higher-order statistics such as skewness and kurtosis are

inevitably aligned. This approach provides a more comprehensive method for aligning

feature distributions, particularly in scenarios where style factors inject more complex

non-linear distortions.

EFDM is grounded in the Glivenko-Cantelli theorem [52], which states that the
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Algorithm 1 PyTorch-like pseudo-code for EFDM.
X: input vector, Y: target vector
, IndexX = torch.sort(X)

SortedY, = torch.sort(Y)
InverseIndex = IndexX.argsort(−1)
return X+ SortedY.gather(−1, InverseIndex) −X.detach()

eCDF of a random variable converges uniformly to the true Cumulative Distribution Func-

tion (CDF) as the sample size approaches infinity.

  \sup _x | \hat {F}_n(x) - F(x) | \xrightarrow {\text {a.s.}} 0 \text { as } n \to \infty 


          (2.6)

where F̂n(x) is the empirical CDF, F (x) is the true CDF, and the convergence is uniform

as the sample size increases. EFDM applies this concept to ensure that feature maps

are matched with precision, which addresses recognizing the variations in various style

factors.

The practical implementation of EFDM involves point-wise transformations of

the feature maps based on the sorting of their values, thus ensuring that the empirical

distributions are aligned. A PyTorch-like pseudocode for EFDM can be written as in

Algorithm 1.

This algorithm matches the feature distributions by sorting the values in both the

input and target vectors and then applying a pointwise transformation based on the sorted

indices. The result is a precise alignment of feature distributions that goes beyond the

simpler Gaussian assumptions used by previous methods.

In this thesis, EFDM plays a critical role in correcting color distributions in images

affected by complex lighting conditions, ensuring that AWB correction is handled with

better accuracy and perceptual consistency. By matching the exact distributions of the

feature maps, EFDM enables a more robust adjustment of the lighting effects, leading to

perceptually consistent results even in challenging scenarios.
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2.3 Transformers Architecture

The Transformer architecture, first introduced by Vaswani et al. [3], is a highly

influential model in deep learning, particularly in Natural Language Processing (NLP)

tasks. Unlike earlier models such as the Recurrent Neural Network (RNN) [53, 54] or

CNN architectures, Transformers use the self-attention mechanism to process input data

more effectively by capturing both long-range dependencies and global context. The

architecture is unique in its ability to weigh the importance of different elements in the

input sequence, regardless of their positions. With this ability, this mechanism can be

more powerful for modeling relationships in various types of sequences than the previous

methods.

2.3.1 Multi-Head Self-Attention (MSA)

At the core of the Transformer architecture is the Multi-Head Self-Attention (MSA)

mechanism, which calculates the relevance of one token in a sequence to all others, al-

lowing the model to capture contextual relationships. The self-attention mechanism uses

three key components: query (Q), key (K), and value (V ) vectors. These vectors are

linear transformations of the input and their relationships are crucial to determining how

much influence one token should have over other tokens. The attention score between

two tokens is calculated by taking the dot product of the Q and K vectors, scaling by

the square root of the dimension of the K vectors, and then passing the result through a

softmax function before multiplying it with the V vectors. This multiplication gives the

weighted importance of each token to the others in the sequence. The formula for the

self-attention mechanism can be seen as follows

  \text {Attention}(Q, K, V) = \text {softmax}\left ( \frac {QK^T}{\sqrt {d_k}} \right )V    







 (2.7)
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Figure 2.1: (Left) Scaled Dot-Product Attention mechanism. (Right) Multi-head attention
comprises multiple attention layers operating in parallel. The figure is obtained from [3].

where where Q represents the query matrix, K the key matrix, V the value matrix, and

dk is the dimension of the key vectors. The final output of the self-attention mechanism is

a weighted sum of the value vectors, where the weights are determined by the similarity

between the queries and keys.

The MSA mechanism enhances this process by allowing multiple self-attention

heads to operate in parallel. Each head focuses on different subspaces of the feature

representations, which can capture different relationships in the data. The outputs of all

the heads are concatenated and projected through a linear transformation, and this can be

formally defined as

  \text {MSA}(Q, K, V) = \text {Concat}(h_1, h_2, \dots , h_h) W^O          
 (2.8)

where hi represents the attention output of the ith head, and WO is a learned weight

matrix. This mechanism allows the Transformer to capture both fine-grained and global

dependencies in the data. The structure of the MSA mechanism can be seen in Figure

2.1, which illustrates both the scaled dot-product attention and the multi-head attention

operating in parallel.
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2.3.2 Vision Transformer (ViT)

The Vision Transformer (ViT) architecture [4] treats an image as a sequence of

patches, which is similar to the way words are handled in NLP tasks. Instead of relying

on convolutional operations, ViT applies the self-attention mechanism to capture long-

range dependencies in images. The core innovation of this architecture lies in dividing

the input image into patches and treating each one as a token for the Transformer model.

Initially, the image X ∈ RH×W×C is split into N patches of size P × P . Each

patch Xp ∈ RP×P×C is flattened into a vector Xp ∈ RP 2×C and then linearly projected

into a higher-dimensional space to create a patch embedding. These patch embeddings,

each of size  D , form a sequence of tokens, with the number of patches given by  N = \frac {H \cdot W}{P^2} 
  .

Since Transformers do not have the ability to inherently capture positional information,

positional embeddings are added to the patch embeddings to retain the spatial relation-

ships between patches. These embeddings allow the model to understand the structure

and layout of the image.

A key feature in ViT is the classification token (i.e., denoted as [CLS]), which is

appended to the sequence of patch embeddings. The [CLS] token, which provides a global

representation of the image, aggregates information from all patches. It not only captures

appearance and texture information, but also encodes more global style information such

as object parts and high-level features that are pivotal for downstream tasks. In deeper

layers, the [CLS] token gradually accumulates more abstract information, which makes it

especially useful for tasks like style transfer or appearance-based classification [55].

The set of tokens, including the [CLS] token, is passed through the Transformer

encoder, which consists of alternating layers of MSA and Multi-Layer Perceptron (MLP)

[56]. The self-attention mechanism in the Transformer enables the model to learn both

local and global dependencies across the entire image without any bias toward local struc-

tures. This flexibility allows the model to aggregate information from distant parts of the
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Figure 2.2: Vision Transformer (ViT) architecture. The input image is divided into non-
overlapping patches, each treated as a token. These patch embeddings, along with a
learnable [CLS] token, are processed by the Transformer encoder. Positional embed-
dings are added to retain spatial information, and the [CLS] token aggregates global
information for downstream tasks such as classification. The figure is obtained from [4].

image. Figure 2.2 demonstrates the overall mechanism of ViT architecture.

ViT has demonstrated strong performance on large datasets, such as ImageNet

[57] and JFT-300M [58], by leveraging its ability to capture long-range dependencies

within images. However, due to the lack of inductive biases such as translation equivari-

ance and locality, which are inherent in CNN, ViT models typically require substantial

training data to achieve competitive results compared to CNN-based architectures.

2.3.2.1 Style Information in ViT

The [CLS] token has shown flexibility in representing ’appearance’ across differ-

ent scenes and images, which mainly captures key visual elements while being invariant

to spatial configuration. It has been used effectively in tasks such as semantic appearance

transfer, where the appearance information of one image is transferred to another while

maintaining structural integrity [55]. Due to its ability to generalize and preserve global
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appearance properties while disregarding specific poses or structural configurations, the

[CLS] token has proven to be highly effective for modeling style factors in ViT.

This flexibility of the [CLS] token can be extended to model lighting conditions in

images. Since lighting can be considered a style factor, the ability of the [CLS] token to

capture global appearance properties makes it ideal for encoding the effects of various il-

luminants. Using this token during the optimization of style factor learning, our approach

can more effectively represent and correct lighting variations across different scenes. This

approach allows us to model lighting as a style factor, which not only contributes to accu-

rate WB correction, but also makes our study novel by utilizing ViT, instead of VGG, for

the task of modeling complex illumination scenarios. The integration of the [CLS] token

for representing the lighting enables the model to handle global and multiple illumination

effects while ignoring contextual or structural information in the scene.

2.3.3 Uformer: U-Shaped Transformer

Uformer [5] is a U-shaped Transformer-based architecture designed for image

restoration tasks. It integrates the hierarchical structure of U-Net [59] with Transformer

blocks, which allows the model to capture both local and global dependencies in the data.

Specifically, Uformer consists of an encoder and decoder with skip connections between

them, which facilitates the preservation of significant features during downsampling and

upsampling operations. The general structure of Uformer is illustrated in Figure 2.3.

The architecture of Uformer introduces two key innovations: the Locally-enhanced

Window Transformer Block (LeWin) and the multi-scale restoration modulator.
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Figure 2.3: Uformer architecture, a U-shaped Transformer-based network for image
restoration. The figure is obtained from [5].

2.3.3.1 Locally-enhanced Window Transformer Block (LeWin)

The LeWin addresses the computational complexity associated with global self-

attention, especially in high-resolution images. Instead of global self-attention, it per-

forms window-based self-attention on nonoverlapping windows, which significantly re-

duces the computational cost while still capturing long-range dependencies. Given the

feature maps X ∈ RC×H×W , they are split into non-overlapping windows of size M×M ,

and self-attention is performed within each window. The self-attention for each window

i is computed as

  \text {Attention}_i(Q_i, K_i, V_i) = \text {softmax}\left ( \frac {Q_i K_i^T}{\sqrt {d_k}} + B_i \right ) V_i    










 (2.9)

where Qi, Ki, and Vi represent the queries, keys, and values for the ith window, dk is the

dimension of Ki, and Bi is the relative position bias specific to window i. The outputs

of each window are concatenated and passed through a linear layer. This window-based

self-attention reduces the computational complexity from O(H2W 2C) to O(M2HWC),
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Figure 2.4: Illustration of LeWin Transformer block, redrawn from [5], by combining
LeWin block and Locally-enhanced feed-forward layer (LeFF) in a single figure.

making it more efficient for high-resolution inputs.

LeWin incorporates a Locally-enhanced Feed-Forward Network (LeFF), as shown

in the dark gray part of Figure 2.4, which uses depth-wise convolutions to capture local

context to address the limitation of standard Transformers in modeling local dependen-

cies. The output of the LeWin block is computed as

  \mathbf {X}'_l &= \text {W-MSA}(\text {LN}(\mathbf {X}_{l-1})) + \mathbf {X}_{l-1} \\ \mathbf {X}_l &= \text {LeFF}(\text {LN}(\mathbf {X}'_l)) + \mathbf {X}'_l
   

 


 (2.11)

where Xl−1 and Xl refer to the feature map in layer l− 1 and l, LN denotes layer normal-

ization, W-MSA is the window-based multi-head self-attention, and LeFF is the Locally-

enhanced Feed-Forward Network.

2.3.3.2 Multi-scale Restoration Modulator

The multi-scale restoration modulator is designed to adjust the feature represen-

tations at different scales in the decoder, which aims to facilitate the restoration of finer

details in the image. This module introduces learnable bias terms on multiple scales,

which are added to the feature maps in each LeWin. These modulators allow the network

to adapt its feature representations for different image restoration tasks.
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The modulator is a lightweight addition that operates with minimal computational

overhead, improving the overall performance of the model on tasks such as denoising,

deblurring, and deraining. It enables flexible adjustments of feature maps, which makes

Uformer highly effective for image restoration.

2.4 Image Signal Processing (ISP) Pipeline

In digital imaging systems, the ISP is a critical component responsible for trans-

forming the RAW sensor data into a visually coherent and color-accurate image. This

pipeline consists of multiple sequential operations, including noise reduction, demosaic-

ing, color space conversion, WB correction, tone mapping, and sharpening, each of which

refines the image while preserving perceptual consistency. Given that the RAW sensor

data lacks intrinsic color balance, WB correction plays a fundamental role in establishing

accurate color perception before subsequent processing steps manipulate contrast, tone,

and detail.

To fully understand the role of WB correction within an imaging system, it is es-

sential to analyze its interaction with key components of the ISP pipeline. The ISP applies

a sequence of transformations to RAW sensor data, where each stage depends on the ac-

curacy of the preceding operations. Since WB correction is one of the earliest steps, its

accuracy directly affects downstream tasks such as color space conversion, tone mapping,

and noise reduction. Errors in WB estimation introduce systematic color shifts that prop-

agate through the pipeline, leading to false color artifacts, perceptual inconsistencies, and

potential color clipping in the final image.

Furthermore, different ISP modules process chromatic and luminance information

differently, which makes the color consistency highly dependent on proper WB correc-

tion. For example, non-linear contrast adjustments in tone mapping may amplify color

inaccuracies if the WB correction step fails to neutralize unwanted illumination effects.
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Similarly, denoising algorithms, which often rely on statistical assumptions about color

distributions, may not perform optimally when color channels retain residual illumination

biases. These interdependencies highlight the critical role of WB correction in preserving

color fidelity across all ISP stages.

The following sections present a detailed overview of key ISP components, de-

scribing their role in image formation and explaining how WB correction interacts with

these processing stages.

2.4.1 RAW Image Capture and Initial Processing

When a digital camera captures an image, the sensor records the light hitting each

pixel as a raw intensity value. This raw data, called the RAW image, represents the

sensor’s most direct output. It contains all the light information without any in-camera

processing, such as white balance, noise reduction, or sharpening. RAW images offer high

dynamic range and flexibility for post-processing, but they require multiple correction

steps before being converted into the final RGB image.

A typical RAW image contains imperfections due to the nature of the sensor and

its processing environment. To transform this data into a usable form, the following cor-

rections are applied.

2.4.2 Black-Level Correction

The ”black level” refers to the sensor’s baseline response to zero light exposure.

Even in complete darkness, sensors can register nonzero values due to thermal noise or

some factors related to the physical properties (e.g., electricity) of the sensor. Black-level

correction is the process of subtracting this baseline noise from each pixel to ensure that

areas without light are represented as true black in the final image. The black level is

usually determined during sensor calibration, and correcting it ensures that the darkest
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Figure 2.5: Visualization of hot pixel correction.

areas in the image are accurately represented.

  I_{\text {corrected}}(x, y) = I_{\text {RAW}}(x, y) - C_{BL}       (2.12)

where IRAW(x, y) represents the raw pixel value where x and y are the spatial locations of

the corresponding pixel, and CBL is the black level offset determined after calibration.

2.4.3 Hot-Pixel Correction

”Hot pixels” are defective pixels that appear brighter than they should, which of-

ten show up as isolated white or colored spots in the image, particularly in long exposures

or high-temperature conditions. These anomalies may be caused by electrical imperfec-

tions or oversensitivity in certain pixels of the sensor. Hot-pixel correction identifies and

replaces these outlier pixel values by interpolating from neighboring pixel values to min-

imize their impact on the image quality. The formula for this correction operation in the

horizontal direction can be seen as follows

  I_{\text {hot-pixel corrected}}(x, y) = \frac {I_{\text {corrected}}(x-\Delta _x, y) + I_{\text {corrected}}(x+\Delta _x, y)}{2}   
   


(2.13)

where ∆x is the offset for neighboring pixels in the horizontal direction. This process

ensures that outlier pixels do not distort the final image. As seen in Figure 2.5, before the

correction, hot pixels appear as bright outliers, which are highlighted by yellow arrows,
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Figure 2.6: Visualization of the Bayer filter and cross-sections of sensor sensitive to
different color bands. Credit: Colin M. L. Burnett (CC BY-SA 3.0).

due to sensor defects or long exposure times. After correction, the outliers are removed,

and the pixel values are smoothed using neighboring pixel information, restoring a more

natural appearance to the image.

2.4.4 Demosaicing

After black-level and hot-pixel corrections, the next critical step is demosaicing,

known as debayering in the literature. Since most camera sensors use a Bayer filter (i.e.,

a Color Filter Array (CFA)), as shown in Figure 2.6, each pixel in the RAW image only

captures one of the three primary colors: red (R), green (G), or blue (B). The sensor layout

typically follows a Bayer pattern, where each 2 × 2 block of pixels contains two green

pixels, one red pixel, and one blue pixel. This layout means that each pixel lacks full-

color information, which requires interpolation to reconstruct the missing color values at

each pixel.

Demosaicing is the process of estimating the missing color values based on the

known color values of surrounding pixels. Simple methods, such as bilinear interpolation,

can be used, but more advanced techniques, such as gradient-based linear filtering [60] or

directional filtering [61], produce better results by preserving fine details like edges and
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textures while minimizing color artifacts (i.e., false colors or moiré patterns).

Camera manufacturers have developed specialized color filter arrays that incorpo-

rate various improvements tailored to different scenarios, such as enhanced light absorp-

tion characteristics of color bands, reduced susceptibility to color moiré, and increased

sensitivity to light. These specialized filter arrays often require sensor-specific conversion

mapping for the demosaicing process. This means that using the demosaicing method

provided by the camera manufacturer generally yields better results due to its optimiza-

tion for that particular sensor and filter design.

2.4.5 Color Space Transformation

In the ISP pipeline, transforming the RAW image data into a standard color space

is critical to ensure color consistency across various devices. The sensor data from the

camera, which is in a manufacturer-specific native color space, needs to be mapped to a

device-independent, standardized color space, (i.e., XYZ), before further processing and

color correction.

Transformation of RAW image data into a canonical color space is essential to

achieve consistent and accurate color reproduction across different devices. The XYZ

color space, defined by the International Commission on Illumination (CIE), is device-

independent and designed to approximate human vision, making it a neutral reference

point for color processing [62]. This standardization ensures that colors are represented

uniformly on a variety of displays and printers. In addition, many key image processing

tasks, such as white balance correction, color grading, and tone mapping, are more con-

sistent when applied in a standardized color space, as it reduces the variability introduced

by the unique characteristics of camera sensors and color filter arrays. By converting sen-

sor data to XYZ, cameras can more accurately manage color by correcting sensor-specific
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variations and enabling perceptually accurate color rendering. This transformation im-

proves the color accuracy before the data is converted into an output color space, such

as sRGB. Therefore, it ensures that the image aligns with human visual perception and

maintains fidelity across different output devices.

Different camera manufacturers utilize unique CFAs and sensors, which leads to

variations in the native color space captured by the sensor. For instance, Sony sensors may

have different sensitivities to light, compared to Canon or Nikon sensors, while Fuji’s X-

Trans sensors use a distinctive CFA pattern to reduce moiré. As a result, each manufac-

turer typically provides a custom transformation matrix that maps the native color space

of camera to XYZ. This matrix accounts for the specific sensor properties, including the

filter array and sensor sensitivities. A general transformation from the native camera color

space to XYZ is represented by  \begin {pmatrix} X \\ Y \\ Z \end {pmatrix} = \begin {pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end {pmatrix} \begin {pmatrix} R_{\text {n}} \\ G_{\text {n}} \\ B_{\text {n}} \end {pmatrix} 









 

 

 









 (2.14)

where Rn, Gn, Bn are the values in the camera’s native color space, and the matrix coeffi-

cients aij are specific to the camera model and sensor characteristics.

Once the image data has been transformed into the XYZ space, it can easily be

mapped to other color spaces, such as sRGB, Adobe RGB, or ProPhoto RGB, depending

on the display or output requirements [63]. The transformation into XYZ ensures that the

color information is correctly represented and ready for further processing or projection

into the final output space.

2.4.6 White Balance (WB) Correction

WB correction is one of the most critical stages in the ISP pipeline to ensure that

the colors of an image are rendered accurately under various lighting conditions. The main
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goal of WB correction is to neutralize any color cast introduced by the light source, so that

objects that should appear white in reality also appear white in the image, regardless of

the light source’s color temperature. Proper WB correction is essential to produce natural

images in different environments, such as daylight, incandescent, or fluorescent light.

Light sources have different color temperatures, typically measured in Kelvin (K).

As demonstrated in Figure 2.7, the color temperature influences the hue of the light, where

lower temperatures (e.g., around 3000K) produce a warm yellow-orange tint, and higher

temperatures (e.g., 6000K and above) produce cooler and blueish tones. Without WB

correction, images taken under these different lighting conditions would have color casts

that distort their appearance. WB correction compensates for these color changes in the

image by adjusting the relative intensities of the red, green, and blue channels.

In the RAW image capturing process, the camera sensor does not inherently know

the color of the light source. Therefore, it captures color information as-is, which often

leads to images with incorrect color casts. WB correction is typically applied in the XYZ

or native RGB color space before transforming the image into a display-ready color space

like sRGB. This correction ensures that colors are faithfully represented when viewed on

screens or printed. The general approach to WB correction is to adjust the color channels

so that objects that should be white are neutralized to a uniform gray [13]. This is achieved

by scaling RGB values on the basis of the color temperature of the estimated illuminant.

WB correction relying on Gray-World assumption can be formalized as follows

  R' = \frac {R}{\frac {1}{N} \sum _{i=1}^{N} R_i}, \quad G' = \frac {G}{\frac {1}{N} \sum _{i=1}^{N} G_i}, \quad B' = \frac {B}{\frac {1}{N} \sum _{i=1}^{N} B_i} 








 








 








(2.15)

where R, G, B are the original color values, R′, G′, B′ are the white-balanced red, green,

and blue values, and N is the number of pixels in the image.
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Figure 2.7: Color temperatures influence the hue of the light.

2.4.7 Gamma Correction

Gamma correction is a non-linear transformation applied to the image to adjust the

luminance levels. Camera sensors capture light linearly, and this means that the bright-

ness values are proportional to the amount of light hitting the sensor. However, human

vision is non-linear, thus being more sensitive to changes in dark areas than in bright

areas [64]. Gamma correction compensates for this by applying a nonlinear transforma-

tion to the brightness values, which makes the image more perceptually accurate. The

transformation can be described as

  I_{\text {gamma}} = I_{\text {WB}}^{\frac {1}{\gamma }}  



 (2.16)

where γ is the correction factor, which is typically set to 2.2 or 2.4 for sRGB displays.

2.4.8 Tone Mapping

Digital camera sensors can capture a wide range of brightness values in a scene,

often exceeding the display capabilities of common devices. High Dynamic Range (HDR)

images encode this wide range of luminance, but most consumer displays operate within

a limited dynamic range due to physical constraints. Tone mapping is a key process in the

ISP pipeline, particularly when handling images captured in HDR. The primary goal of

tone mapping is to compress the wide dynamic range of luminance values present in HDR

images into a range that can be displayed on conventional Low Dynamic Range (LDR)
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Figure 2.8: Illustration of tone mapping effects on an HDR image.

devices (i.e., standard monitors or mobile screens) while maintaining important visual

details across both bright and dark regions of the scene. Without this operation, attempting

to display an HDR image directly on these devices would lead to significant clipping,

where bright areas become overexposed and details in dark areas may be lost, as illustrated

in Figure 2.8.

In general, tone mapping can be viewed as a transformation applied to the lumi-

nance values of the image, formalized as

  I_{\text {tone}} = TMO(I_{\text {HDR}})    (2.17)

where Itone represents the tone-mapped image, IHDR represents the original high dynamic

range image, and TMO refers to the tone mapping operator. Examples of tone mapping

operators include Drago [65], Reinhard [66], Mantiuk [67], Flash [68], and Dawn [69].

2.4.9 Post-Processing Operations

After key stages like demosaicing, WB correction, and tone mapping, the final

steps in the ISP pipeline involve a series of post-processing operations that aim to im-

prove the overall quality and aesthetics of the image. These operations, which are often

optional and can be included or excluded based on the specific purpose of the imaging,

include denoising and sharpening. The former reduces unwanted noise caused by low-

light conditions or sensor limitations while the latter aims to enhance edges and textures
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to improve clarity. Additionally, memory color enhancement [70] can be applied to boost

colors that are commonly perceived in certain objects, such as the blue of the sky or

the green of the grass. This operation leads to aligning the image with the way viewers

expect certain objects to appear. Further enhancements, such as contrast adjustments, vi-

gnette correction, and color grading, are often applied to fine-tune brightness, shadows,

or saturation, to create a visually appealing final output. Examples of these adjustments

include increasing contrast for better depth or applying vibrance to intensify muted col-

ors without oversaturating the overall image. These post-processing steps are optional

and collectively ensure that the image is polished and ready for display across various

devices, depending on the imaging goals.
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3. LITERATURE REVIEW

WB correction is a fundamental process in digital imaging aimed at removing

color casts caused by scene illumination. Various approaches have been proposed over

the years, ranging from traditional, physically motivated algorithms to more recent deep

learning-based methods. This section reviews the key methods in illuminant estimation

and WB correction, highlighting their contributions, methodologies, and limitations. Ta-

ble 3.1 summarizes the comparative analysis of various methods, highlighting their adapt-

ability, computational cost, robustness to multi-illuminant conditions, accuracy, real-time

capability, and additional comments.

3.1 Traditional Methods

One of the earliest methods, introduced by Buchsbaum [13], estimates the illu-

mination of the scene by calculating the spatial average reflectance under the assumption

that the illuminant is uniform across the entire scene (i.e., the Gray-world assumption).

Although simple, this approach forms the basis for subsequent advancements. Building

upon this, Brainard and Wandell [14] proposed an analysis on the Retinex Theory [71]

(i.e., the maximum response in the RGB-channels is caused by a perfect reflectance),

which estimates illumination by computing lightness values invariant to lighting condi-

tions, thus offering robustness in more complex scenes. Gershon et al. [72] introduced an

improved approach to this assumption by segmenting the image and computing the aver-

age color for each segment, rather than for all pixels. This method mitigates the sensitivity

to large uniformly colored areas injected in earlier algorithms, which often violates the

assumption of a balanced color scene.

In the evolution of the Gray-world assumption, Barnard et al. [73] introduced
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the General Gray-World hypothesis, which extends the basic concept by improving re-

flectance estimates across varying surfaces and lighting environments. This method cor-

rected some of the limitations of earlier techniques by offering more robust illuminant

estimations under real-world conditions. Finlayson and Trezzi [15] later demonstrated

that these methods (i.e., Gray-world and Retinex) could be viewed as extremes of the

Minkowski family norm (i.e., L1 and L∞), which suggests that intermediate values can

provide more accurate illumination estimates. Xiong et al. [74] proposed an extension to

the Gray-World assumption, which first identifies colors likely to originate from real gray

surfaces, then averages only those colors.

A surface with perfect reflectance properties reflects the full spectrum of the cap-

tured light, which means its color is exactly that of the light source [75]. The max-RGB

algorithm alleviates the assumption of perfect reflectance by estimating the illuminant

through the maximum response in each color channel separately. Related approaches,

such as those of Gijsenij and Gevers [76] and Ebner [77], apply averaging (i.e., sort of

smoothing) before the illuminant estimation, which reduces the impact of noisy pixels

and thus improves the accuracy of the white-patch algorithm. Funt and Shi [78, 79] fur-

ther analyze the max-RGB algorithm, which demonstrates that both dynamic range and

pre-processing strategies significantly affect the overall performance.

The Gray-Edge hypothesis by Van de Weijer et al. [80] introduced the idea that the

largest variation in color derivatives corresponds to the direction of the light source, which

can be estimated using the Minkowski norm of these derivatives. Chakrabarti et al. [81]

presented an approach that explicitly models spatial dependencies between pixels, where

it offers a more efficient way to capture these relationships compared to the Gray-Edge

hypothesis. This approach allows the model to learn pixel dependencies more effectively

for improved color constancy. Gijsenij et al. [82] further improved the edge-based color

constancy by computing a weighted average of various edge types, which improves the
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overall accuracy in edge-dominated scenes. Joze et al. [83] demonstrated that selecting

the brightest 20% of the pixels yields superior results across existing methods (i.e., Bright

pixels). Cheng et al. [12] took another spatial approach, where the study focused on

analyzing the relationship between spatial and color information for better illumination

estimation.

3.2 Gamut Mapping Solutions

Gamut-based solutions are based on the principle that only a limited range of

colors (i.e., gamut) can be observed under a specific illuminant. Forsyth [84] originally

introduced the gamut mapping algorithm, which assumes that, for a given illuminant,

one observes only a subset of all possible colors, and any deviation from the canonical

gamut indicates a shift in the light source. Later works, such as Finlayson et al. [85] and

Finlayson et al. [86], introduced extensions that relax the assumption operating under a

diagonal model to improve robustness in cases where it fails, such as by augmenting the

canonical gamut or incorporating nonlinear transformations.

Following early work on gamut mapping solutions, Finlayson and Hordley [87]

introduced a gamut-based constraints solution to estimate illumination by mapping diag-

onal matrices from unknown lighting conditions to reference colors. Gijsenij et al. [88]

extended this by incorporating linear filter output, instead of the diagonal model, which

improves the robustness of the solution under varying lighting conditions. Lastly, Mosny

et al. [89] proposed a simplified version of the gamut mapping algorithm by using a sim-

ple cube representation of pixel values, rather than the more complex convex hull. This

approach reduces computational complexity while still providing an effective illuminant

estimate.
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3.3 Low-level Statistical Methods

Color by correlation, introduced by Finlayson et al. [90], replaces the canoni-

cal gamut with a correlation matrix, which splits the chromaticity space into cells and

calculates the probability of occurrence under each illuminant, which is then matched to

the input image to estimate the most likely light source. Rosenberg et al. [91] extended

this method by incorporating Kullback–Leibler divergence to select the scene illuminant

based on the divergence between the correlation matrix of the input image and those of

possible light sources.

Bayesian methods have also played a significant role in WB correction. Brainard

and Freeman [92] developed a Bayesian model that captures the relationship among il-

luminants, surfaces, and photo-sensor responses where the prior distributions are used

to describe the likelihood of specific illuminants and surfaces in the scene. Sapiro [93]

proposed a framework for estimating illuminant and reflectance in natural images using

the generalized probabilistic Hough transform. Each pixel in the image casts a vote for

potential illuminants, and the final estimation is determined by aggregating these votes,

providing a robust solution for illumination estimation. Moreover, another Bayesian ap-

proach, proposed by Tsin et al. [94] to classify outdoor scenes, which incorporates a like-

lihood model that accounts for the physics of image formation, sensor noise distribution,

and prior distributions over geometry, material types, and illuminant spectrum parame-

ters. Rosenberg et al. [95] presents the Bayesian approach that relaxes the assumption of

Gaussian-distributed reflectance factors by employing a non-Gaussian probabilistic model

for the image formation process. Lastly, Gehler et al. [96] analyzed that precise priors for

illumination and reflectance can achieve competitive results compared to state-of-the-art

methods.

Basic machine learning techniques such as support vector regression have been

used by Xiong and Funt [97], and Wang et al. [98], which utilize statistical models to
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estimate the illuminant based on the input data. Similarly, Agarwal et al. [99] have ex-

plored linear regression techniques such as ridge regression and kernel regression, which

offer efficient solutions to estimate the illumination of the scene. An alternative approach

by Xiong et al. [100] employs thin-plate spline interpolation for illuminant estimation,

which interpolates the color of the light source over a non-uniformly sampled input space

(e.g., a collection of training images).

In addition, studies have shown that traditional methods can be enhanced by in-

corporating various statistical techniques for improvement. Gao et al. [101] proposed the

Locally Normalized Reflectance Estimation (LNRE) method, inspired by retinal feedback

mechanisms. By normalizing local patches and computing the ratio of global intensity

summations, they estimate the illuminant with minimal computational cost and only one

free parameter. Afifi et al. [102] introduced a projective transformation approach for post-

estimate bias correction, which adapts to the input RGB vector to improve illumination

estimation accuracy. Banić et al. [103] demonstrated fine-tuning of illumination estima-

tion parameters using only non-calibrated images, (i.e., the green stability assumption),

which can allow us to eliminate the need for time-consuming sensor-specific calibration

without any significant performance loss compared to training on calibrated images. Qian

et al. [104] proposed the mean-shifted gray pixel method, which statistically approxi-

mates pixels assumed to be gray under neutral illumination. Extending this idea, Qian

et al. [105] developed the Grayness Index (GI) using Shafer’s Dichromatic Reflection

Model (DRM) [106], which mainly allows for the ranking of pixels by their grayness and

thus improves multi-illuminant estimation.
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3.4 Methods Using Scene Semantics

Gijsenij and Gevers [107] proposed a dynamic selection approach for WB cor-

rection algorithms, which chooses the appropriate method based on the known scene se-

mantics of the image. Building on this idea, Bianco et al. [108] developed a method

to classify scenes into three categories—indoor, outdoor, and unsure—and learn the op-

timal correction algorithm for each. Lu et al. [109] introduced a method that uses 3D

geometry models to classify images into stages, segment them into different regions with

hard and soft segmentation, and select the optimal color constancy algorithm for each

geometrical segment, enabling light source estimation to be adapted to the geometry of

the entire scene. Van De Weijer et al. [110] proposed a method that improves illuminant

estimation by applying several approaches to compute the possible set of illuminants,

then selecting the one that results in the most semantically likely image—based on prior

knowledge of the world—by modeling the image as a mixture of semantic classes (e.g.,

sky, grass, road) using probabilistic latent semantic analysis. Rahtu et al. [111] extended

this approach by introducing the concept of memory color, which refers to colors that are

specifically associated with certain object categories, further improving the accuracy of

illuminant estimation.

3.5 Neural Networks

In recent years, neural networks have become increasingly prominent in illumi-

nant estimation and WB correction, which offers data-driven approaches that use the abil-

ity of deep learning to capture complex relationships between scene chromaticity and

lighting conditions. Cardei et al. [112] introduced one of the first approaches to illumi-

nant estimation using neural networks, where the input to the network is a binarized chro-

maticity histogram of the input image, and the output consists of two chromaticity values

representing the estimated illuminant. Following this, Stanikunas et al. [113] proposed

40



an approach where the neural network calculates color differences between foreground

and background factors, using a color vector as the output signal. By being trained with

the backpropagation algorithm, the network was designed to identify the color of Munsell

samples [114] under varying illuminants to adapt the network to diverse lighting condi-

tions.

Lou et al. [115] reformulated WB correction as a Deep Neural Network (DNN)-

based regression task, which estimates the color of the light source directly. Addressing

limitations in previous methods, it notes that traditional approaches rely on specific as-

sumptions that prevent them from serving as universal predictors. Bianco et al. [116]

introduced a CNN-based architecture for estimating scene illumination directly from im-

age patches in the spatial domain, which aims to eliminate the reliance on hand-crafted

features used in previous work. This network contains a convolutional layer with max

pooling, a fully connected layer, and three output nodes, and also combines feature learn-

ing and regression within a unified optimization. In parallel with [116], Barron [16] refor-

mulated WB correction as a 2-dimensional spatial localization task in log-chrominance

space, which goes beyond traditional statistical modeling of natural object colors and

illuminates.

Shi et al. [117] proposed a more advanced network architecture, namely DS-Net,

to address estimation ambiguities in color constancy. Their model includes two inter-

acting sub-networks: HypNet, a two-branch network that generates multiple illumination

hypotheses to capture various illuminant modes, and SelNet, which adaptively selects the

best estimate among these hypotheses. On the other hand, Bianco et al. [118] presented

a three-stage method for illuminant estimation in RAW images, which combines CNN-

generated local estimates with a support vector regressor for refinement, which adapts to

single and multiple illuminant scenes. This approach advances the overall performance

in illuminant estimation by effectively integrating local and global estimations through
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non-linear aggregation.

Oh et al. [119] proposed a deep learning approach to estimate scene illumination

by considering the color constancy problem as an illumination classification task where

CNN-based model is designed to directly compute the illuminant color under uniform

lighting, which demonstrates superior feature extraction for illumination estimation. Hu

et al. [17] addressed estimation ambiguity in patch-based CNNs for color constancy by in-

troducing a fully convolutional network that applies confidence weights to patches, which

enhances overall performance. Their contribution is related to adding a custom pooling

layer that merges local estimates into a global solution, and thus allowing the network to

automatically learn what to learn and how to pool without requiring additional supervi-

sion. Afifi et al. [6] leveraged the k-nearest neighbor strategy for correcting improperly

white-balanced images by identifying similar examples within a large dataset. From these

examples, the method effectively removes color casts by constructing a non-linear color

correction transform to be applied. Afifi et al. [120] investigated how strong color casts

from improperly applied WB affect neural network performance in downstream vision

tasks (i.e., image classification and segmentation).

Recent advances in WB correction have introduced various optimization and learn-

ing strategies, which aim to improve the overall performance under complex and diverse

lighting conditions. Banić et al. [1] introduced an unsupervised learning method that

estimates parameters without calibrated ground truth data, which effectively allows inter-

camera adaptation and eliminates the need for sensor-specific calibration. Hernandez-

Juarez et al. [121] proposed a Bayesian multi-hypothesis framework that applies multiple

candidate illuminants to a scene and then learns an achromatic likelihood model via a

camera-agnostic CNN. This enables effective multi-camera training and improves sensor

generalization. Bianco et al. [19] presented a quasi-unsupervised learning strategy where
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a deep CNN is trained to detect achromatic pixels in grayscale images. This enables effec-

tive illuminant estimation without requiring specific illuminant information while achiev-

ing competitive results in both unsupervised and supervised settings. Xu et al. [122]

developed a deep metric learning approach, which utilizes triplet networks [123]. Their

architecture produces a discriminative but robust feature space by grouping images based

on similar illuminant conditions rather than the content, thus achieving robust illuminant

estimation across varying scenarios. Finally, Lo et al. [23] presented CLCC, a contrastive

learning framework, that leverages illuminant-dependent features through the augmenta-

tion of color in the raw domain, and achieves good performance with fewer parameters

and enhanced robustness in data-sparse regions. Li et al. [124] proposed SWBNet, a spe-

cialized network for WB correction, which stabilizes color correction in varying color

temperatures by learning temperature-insensitive features, employing a contrastive loss

and a color temperature-oriented transformer architecture.

Recent advances by Afifi et al. [125, 20, 126] have introduced novel frameworks

to address the challenge of modifying WB in sRGB images post-capture. Traditional

in-camera imaging pipelines apply WB early, followed by non-linear color adjustments,

which challenge post-capture WB correction. To solve this, Afifi et al. [125] proposed

a method that takes advantage of lower-resolution versions of an image with varying

color temperatures, which enables learning color mapping functions, to adjust the full-

size sRGB image to different color temperatures with minimal data overhead. Following

this, Afifi et al. [20] designed a specialized DNN architecture that maps an sRGB image

to various WB settings, which achieves greater accuracy and flexibility compared to the

leading methods of its time. Another extension by Afifi et al. [126] enables interactive

WB editing on camera-rendered images by linking non-linear color-mapping functions

directly to user-selected colors. This allows efficient, user-driven WB adjustments even on

camera-rendered images with memory and run-time efficiency improvements. Ulucan et
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al. [127] conducted a comprehensive analysis of how strong color casts affect traditional,

learning-based, and data-driven WB correction algorithms, particularly for illuminants at

the edges and beyond the color temperature curve.

Furthermore, Buzzelli et al. [128] introduced a different deep learning approach

to illuminant estimation that bypasses the need for ground-truth illuminants by leveraging

an object recognition loss function as an auxiliary task. Afifi et al. [129] presented CNN-

based cross-camera WB correction architecture, namely C5, which is a learning-based

method that adapts dynamically to the spectral properties of unseen cameras for illuminant

estimation. Distinct from earlier models, C5 employs transductive inference by utilizing

additional unlabeled images during testing, enabling real-time adaptation to new camera

sensors without requiring calibration. Ulucan et al. [130] introduced a computational

color correction method inspired by biological principles, which aims to emulate the hier-

archical color perception of the human visual system. This model integrates aspects such

as focal and peripheral vision, the retinotopic structure, double-opponent cell responses,

and the visual cortex’s saliency map, thereby mimicking how humans achieve color con-

stancy and respond to color assimilation illusions. Based on findings from human visual

perception, Ulucan et al. [131] leveraged the luminance of the brightest patches and the

space-average color as indicators for illuminant estimation, inspired by the innate ability

of the human visual system to discount illumination in perceiving object colors.

With the introduction of datasets containing multi-illuminant scenarios [132, 133,

134, 135], especially like the LSMI dataset [135], research has increasingly focused on

handling complex, non-uniform illumination scenarios. This prompts recent studies to

develop approaches specifically aimed at addressing the challenges posed by multiple

light sources in a scene. In earlier studies focusing on WB correction for non-uniform

illuminated scenes, Gijsenij et al. [133] introduced a methodology to extend traditional

algorithms by applying them to individual patches within an image, rather than globally,
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and then combining these estimates for a more accurate correction in scenes with multiple

light sources. Bleier et al. [132] adapted existing WB correction algorithms to estimate

illumination locally by segmenting images into super-pixels, each with its own illuminant

estimate, and then combining these estimates to better approximate the model for complex

lighting environments. Joze et al. [136] proposed an exemplar-based learning framework

for WB correction that addresses the challenges of multi-illuminant scenes by estimating

illumination based on local surface statistics, rather than assuming a uniform scene illu-

minant. Through unsupervised learning, this approach builds models for each surface in

training scenes and then leverages nearest-neighbor surfaces to estimate illumination in

test scenes. Beigpour et al. [134] proposed an energy minimization framework within a

Conditional Random Field (CRF) to estimate both the colors and spatial distribution of

multiple illuminants.

The following studies build upon the need to correct color balance in real-world

settings where multiple light sources often co-exist. Afifi et al. [2] proposed a WB correc-

tion method relying on learning the weighting maps of multiple pre-defined WB settings

(i.e., color temperatures) to obtain a corrected image by blending them to effectively han-

dle mixed lighting conditions. Akazawa et al. [137] introduced an exceptional method

for WB correction, namely N-white balancing, which adjusts WB by aligning multiple

source white points (i.e., N ) rather than relying on the number of light sources. Under

multi-illuminant conditions, this approach effectively matches each source point to its

ground truth value, which reduces lighting effects even if N exceeds the actual illumi-

nants. Li et al. [138] introduce a multi-task learning framework with auxiliary tasks,

such as achromatic-pixel detection and surface-color similarity prediction, to improve

local lighting and surface color estimation under complex illuminant conditions. Domis-

lović et al. [139] designed a CNN-based model that operates patch-wise, assuming each

patch contains a single illuminant, but leverages image-wide features to enhance local
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illuminant accuracy under variable light sources. Entok et al. [140] presented a pixel-

wise multi-illuminant model incorporating total variation loss and bilateral filtering. With

the help of these additional factors for optimization, the model can maintain smooth il-

lumination transitions across spatial dependencies. Finally, Kim et al. [9] proposed a

Transformer-based WB architecture with the addition of a novel slot attention strategy

to separately represent individual illuminants, which then fuse into a comprehensive illu-

mination map. This strategy allows for scene illumination editing and achieving leading

performance across multi-illuminant benchmarks. Collectively, these methods push the

boundaries of WB correction in complex lighting scenarios, which offer promising results

for non-uniform illumination correction.

Despite advancements in WB correction, existing methods still face challenges in

multi-illuminant environments, generalization across diverse scenes, and computational

efficiency. Traditional statistical approaches, such as Gray-World [13] and Gamut Map-

ping [84, 85, 86], rely on global assumptions that fail under spatially varying lighting

conditions. Scene semantics-based methods incorporate high-level priors but lack adapt-

ability to unseen illuminants, while deep learning-based approaches improve accuracy,

but often fail to model illumination’s statistical impact on image features. Additionally,

many methods focus on pixel-wise corrections, overlooking higher-order feature relation-

ships crucial for perceptual color consistency.

To overcome these limitations, this dissertation introduces a feature distribution

matching-based WB correction framework, treating lighting as a style factor for robust

adaptation under diverse illumination conditions. By leveraging EFDM and a well-designed

optimization process, the proposed method aims to exactly align the image color distribu-

tions with an ideal white-balanced reference during training, minimizing color distortions

at a feature level rather than solely at the pixel level.
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4. METHODOLOGY

This chapter outlines the methodological framework that underpins the proposed

approach to WB correction, which is developed through a series of progressive studies that

conceptualize lighting as a style factor within scenes. The foundation for this approach

was initially established in a study addressing Instagram filter removal in fashionable im-

ages [41], where filters were considered as style factors injected into the images. This

work demonstrates how style factors could be isolated and removed within an encoder

architecture. This idea is further extended through patch-wise contrastive style learning

[141] to enhance filter removal. Although initially unrelated to WB correction, these

studies introduce a critical insight: disruptive visual elements, including lighting, could

be considered as style factors and effectively swept away with the help of a deep learning

framework. Building upon this insight, subsequent work [24] focuses directly on WB

correction, which aims to model lighting variations as a style factor to enhance WB cor-

rection performance. This shift led to the development of the use of statistics from feature

maps to construct style representations in scenes, which culminated in the present study.

Here, feature distribution matching is utilized both as a fundamental component of the

architecture [28] and as an objective function [29] to represent illumination as a style to

achieve robust WB correction.

4.1 Foundational Study

This section summarizes the foundational study that forms the basis for modeling

disruptive elements within a scene as style factors, the main approach proposed in this

thesis.

48



Figure 4.1: Overall architecture of Instagram Filter Removal Network (IFRNet).

4.1.1 Instagram Filter Removal on Fashionable Images

The process of WB correction fundamentally aims to mitigate unwanted color

shifts caused by varying illumination conditions. Although WB correction is tradition-

ally addressed within an ISP pipeline, previous research has shown that certain artificial

modifications, such as social media filters, can introduce stylistic alterations that affect

the perceived color of the scene. From a computational perspective, these modifications

share similarities with illumination-induced color distortions, as they impose systematic

transformations on the color characteristics of an image. This study initially explored the

removal of artificial stylistic alterations to gain a deeper understanding of the represen-

tation of the style factor, which ultimately laid the foundation for modeling lighting as a

style factor in WB correction.

Model Architecture and Objective: The Instagram Filter Removal Network (IFRNet)

is designed as an encoder-decoder framework with an adaptive feature normalization

mechanism that effectively removes external stylistic influences while preserving the con-

tent structure. The central objective of IFRNet is to restore images altered by social media
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filters by treating these filters as extraneous style factors that can be isolated and removed.

The architecture incorporates AdaIN, which aligns feature distributions between

the filtered and original images in multiple layers of the encoder. The model style extrac-

tor module, a fully connected five-layer network, maps high-level features extracted from

a pretrained VGG network into a latent style representation. This representation is subse-

quently used to predict affine transformation parameters that drive feature normalization.

The overall architecture of IFRNet is shown in Figure 4.1.

Mathematically, given a feature representation zvgg extracted from a pretrained

VGG network, the predicted affine transformation parameters yi for each normalization

layer are computed as

  y_{i} = h_{i}(f_{fc}(\mathbf {z}_{vgg})),    (4.1)

where ffc(·) denotes the fully connected style extractor, and hi(·) represents the layer-

specific transformation function.

The AdaIN operation aligns the mean and variance of the input feature maps x

with those of the extracted style representation y:

  \text {AdaIN}(x, y) = \sigma (y) \left ( \frac {x - \mu (x)}{\sigma (x)} \right ) + \mu (y), \label {eq:adain}   







  (4.2)

where µ(x) and σ(x) represent the mean and standard deviation of the input feature maps,

while µ(y) and σ(y) correspond to those of the extracted style representation. This adap-

tive normalization process ensures that the stylistic artifacts introduced by filters are sys-

tematically suppressed through the heads hi(·), which acts as a reverse style transfer,

allowing the model to restore images to their original unaltered color distributions.

To maintain content integrity while removing the style factor injected by filters, the

encoder is constructed with six residual blocks, each incorporating an AdaIN layer to nor-

malize feature maps using the affine parameters learned by the style extractor. Skip con-

nections are introduced to preserve essential content information, ensuring that the model
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selectively removes filter-induced distortions without compromising semantic structure.

The effect of these skip connections can be expressed as

  o_{i} = r_i(v_i, y_i) + v_i,       (4.3)

where ri(·) represents the residual block, which receives feature maps vi and affine pa-

rameters yi as input, producing output oi. Note that when yi is set to zero, AdaIN at

that layer is effectively neutralized, which means that normalization does not alter feature

maps. This implies that no external style information (e.g., visual artifacts injected by fil-

ter) is being applied or retained in the feature maps at that level. By setting yi to zero, the

model preserves only the features related to the pure style of the image, which allows the

encoder to sweep away any additional style information and retain the original content of

the scene with its pure style. This approach provides fine-grained control over the extent

of style removal at each layer in the encoder.

Objective Function: The IFRNet is trained using a multi-component loss objective de-

signed to ensure texture fidelity, semantic consistency, and structural coherence in the

restored images. The objective function integrates a patch-wise texture loss, a semantic

consistency loss, and an adversarial loss, each contributing to the overall stability and

accuracy of filter removal.

To preserve fine-grained details, patch-based texture loss is employed using the

ID-MRF formulation [142], which enforces local texture similarity between the restored

image Iout and the reference image Igt. This loss is defined as follows.

  \mathcal {L}_{tex} = \sum _{p} \min _{q \in N(p)} \| \phi _p(\mathbf {I}_{out}) - \phi _q(\mathbf {I}_{gt}) \|_2^2, 






  (4.4)

where ϕp(·) represents feature extraction at location p, and N(p) denotes the nearest-

neighbor set of patches.
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To ensure feature-level consistency, a semantic consistency loss is introduced,

which aligns the intermediate feature representations of the restored and ground truth

images. This loss is computed as

  \mathcal {L}_{sem} = \sum \limits _{p=0}^{P-1} \frac {1}{C_p H_p W_p} \left \| \Phi _p(\mathbf {I}_{out}) - \Phi _p(\mathbf {I}_{gt}) \right \|_{2}^{2}, 







   (4.5)

where Φp(·) denotes the feature map of the pth layer extracted from a pretrained VGG16

network [48].

To enhance perceptual realism and ensure that restored images maintain struc-

tural integrity, an adversarial loss is applied using a PatchGAN discriminator [143]. The

adversarial objective is formulated as

  \mathcal {L}_{adv} = \mathbb {E} [ \log D(\mathbf {I}_{gt}) ] + \mathbb {E} [ \log (1 - D(\mathbf {I}_{out})) ],      (4.6)

where D(·) represents the discriminator network.

To stabilize training, a gradient penalty term is incorporated

  \mathcal {L}_{gp} = \lambda _{gp} \mathbb {E} \left [ (\|\nabla _{\hat {\mathbf {I}}} D(\hat {\mathbf {I}})\|_2 - 1)^2 \right ],  

 


 (4.7)

where Î is an interpolated image between Iout and Igt.

In addition, an auxiliary classification loss is introduced to improve robustness,

ensuring that the network correctly predicts the removed filter type,

  \mathcal {L}_{cls} = \lambda _{cls} \sum _{i=1}^{N} y_i \log (\hat {y}_i),  




  (4.8)

where yi and ŷi denote the true and predicted filter labels, respectively.

The final loss function integrates all components as follows.

  \mathcal {L} = \lambda _{tex} \mathcal {L}_{tex} + \lambda _{sem} \mathcal {L}_{sem} + \lambda _{adv} \mathcal {L}_{adv} + \lambda _{gp} \mathcal {L}_{gp} + \lambda _{cls} \mathcal {L}_{cls}.           (4.9)

With its encoder-decoder architecture and the integration of AdaIN layers, IFRNet

effectively distills and removes filter-induced style information from the feature maps.
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This established a basis for considering lighting as a similar extrinsic factor in scenes for

WB correction. This methodology of modeling external style factors in encoder layers

provides a transferable approach, which allows us to model lighting as a style factor,

which aligns with the broader scope of this research on style factor-based WB correction.

Significance for WB Correction: Although IFRNet was initially developed for filter

removal, its underlying style-based modeling framework provided a crucial insight: illu-

mination conditions can be treated as a style factor that alters the color distribution of an

image. The methodology employed in IFRNet, where stylistic distortions are systemati-

cally removed by aligning the feature distribution, directly influenced the development of

proposed approaches for WB correction.

4.2 Learning Style Factors for White Balance Correction

In machine learning-based computer vision, style often denotes a broad spectrum

of abstract image attributes (i.e., artistic elements, personal features or textures), which

are shaped by the learned feature space of the machine learning model. For example,

a model’s feature space can capture aspects such as the artistic style of a painting, the

hairstyle of a person, the texture of clothing, or even the color characteristics of an animal.

Previous studies, including [41], have shown that disruptive image modifications, such as

social media filters that corrupt the attributes of the original image, can be effectively

modeled as style factors. Based on this principle, we propose that lighting in scenes,

whether from a single or multiple illuminants, can similarly be treated as an injected style

factor.

However, this approach diverges from conventional style transfer methods. In-

stead of transferring the stylistic qualities of one image to another, our goal is to nor-

malize or eliminate injected style information, where illumination serves as the primary
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Figure 4.2: Example of predictions for the weighting maps and White Balance correction
results by blending these maps.

style factor. In this context, the model learns to adaptively adjust varying lighting condi-

tions to achieve consistent white balance. Our initial approach is designed to address both

uniform and mixed illumination settings by integrating style removal through adaptive

feature normalization. The following iteration advances this by employing EFDM [30],

instead of naive feature alignment, and leverages the capabilities of a Transformer-based

architecture (i.e., Uformer [5]). Finally, the most recent version replaces the style removal

module with a novel color distribution matching loss term, which enhances precision in

modeling the lighting as style.

4.2.1 Illumination as Style with Adaptive Feature Normalization

Similarly to the foundational work, our initial approach introduces a novel design

for WB correction that treats the lighting in the scenes with multiple illuminants as a style

injected into the scene by different light sources.
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4.2.1.1 Modified Camera ISP for WB Correction

Following the prior work on WB correction [20, 2], we design a method to produce

the high-resolution image with fixed WB settings (i.e., daylight) and additional small

images rendered with a set of predefined WB settings, which are {t,f,d,c,s} and

{t,d,s}. {t,f,d,c,s} refers to tungsten (2800K), fluorescent (3800K), daylight

(5500K), cloudy (6500K), and shade (7500K), respectively. The formula for rendering

the small images can be described as follows

  \hat {I}_{c_i} = M_{c_i}\phi (I_{init})    (4.10)

where Iinit is the initial high-resolution image rendered with a fixed WB setting (i.e.

daylight), Îci represents the output image mapped to the target WB setting, Mci is the

matrix that maps the colors of the initial image represented in a higher-dimensional space,

and ϕ(·) is a polynomial kernel function projecting the colors of the initial image into

the higher-dimensional space. ϕ(·) is optimized by minimizing the sum-squared error

between the colors of the target and the source images, as in [2]. As distinct from [2],

we consider this part as a preprocessing for training, and save the target images before

training, instead of computing them on the fly.

After extracting the small images, following the method in [2], we employ a learn-

ing mechanism for the weighting maps of different scenes with a predefined set of WB

settings. We use these learned weighting maps for generating the final sRGB output image

by linearly combining them with the small images, as shown in the following equation

  \Tilde {I}_{corr}=\sum _{i}W_i\odot \Tilde {I}_{c_{i}} \label {eq:blend} 



   (4.11)

where Ĩcorr is the corrected small sRGB image, ⊙ is Hadamard product, Wi represents

the weighting map for ith WB setting (i.e., ci), and Ĩci denotes the small image rendered

with ci. This operation for WB correction is illustrated in Figure 4.2. Apart from prior
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Figure 4.3: Overall design of proposed learning mechanism for the weighting maps of
different White Balance settings.

WB correction methods [20, 2], we employ a learning-based style factor approach to

effectively learn weighting maps, allowing the model to adapt to diverse illumination

conditions in scenes.

4.2.1.2 Learning Mechanism

Given a set of small images Ĩci , our proposed learning mechanism learns to esti-

mate {Wi}. Our initial work adapts a style removal network proposed in [41] as the learn-

ing mechanism of the weighting maps. The architecture consists of an encoder-decoder

structure that employs an adaptive feature normalization strategy to all layers of the en-

coder part. With the help of this strategy, illumination that comes from different light

sources can be modeled as an external style, which needs to be discarded or adjusted in

another style. The main component to achieve this is AdaIN [44] for each encoder layer,

which transfers the feature statistics computed across spatial locations. AdaIN aligns the

channel-wise mean µ and variance σ of the feature maps of the content image x with the

style input statistics y, as formulated in Equation 4.2.

To extract the style input for the images, we use a multi-head mapping module
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that maps the feature representations encoded by a pretrained VGG network [48] to the

style latent space. The style latent code w is fed into different heads for different encoder

levels, and each head hi is attached to a projection layer pi (i.e., fully-connected), which

adapts the affine parameters yi of each normalization layer in the encoder.

  \begin {aligned} \textbf {w} &= M(\textbf {z}), \\ y_i &= p_i(h_i(\textbf {w})) \end {aligned} 

 

(4.12)

where z is the feature representation of the input image x extracted by VGG, and M

denotes the style extractor module mapping the input latent space to the style latent space.

In our design, the style extractor module is made up of a five-layer MLP block.

The encoder contains five residual blocks, each of which has a specific AdaIN layer to

normalize the feature maps with the affine parameters projected by the corresponding

head. The network takes the concatenated feature representations of the small images

rendered with different WB settings as input, and learns to produce the weighting maps

for these WB settings. As suggested in [41], we use skip connections between encoder

layers to preserve the related information (i.e., the content assumed under pure white-light

illumination) while distilling the style (e.g., additional illumination led to color cast). The

overall design of the proposed learning mechanism for the weighting maps of different

WB settings is shown in Figure 4.3.

Through an encoder-decoder architecture with aligning feature statistics at each

encoder layer, our method captures and corrects unwanted color casts from varying WB

settings by treating the affine parameters as latent style factors. These affine parameters

are dynamically learned via a style extractor module that maps features from a pretrained

VGG network into a style latent space. This style-informed approach effectively normal-

izes lighting variations across diverse WB settings, which mitigates the impact of mixed

or inconsistent illuminants.

To ensure accurate WB correction and maintain color consistency, the model is
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optimized using a combination of reconstruction and smoothing loss terms, following

prior work [2]. The reconstruction loss minimizes the discrepancy between the WB-

corrected image patches and their corresponding ground truth patches. Given an input

patch Pci rendered under a specific WB setting ci, and the ground truth patch Pgt, the

reconstruction loss is formulated as

  \label {eq:recon} \mathcal {L}_r = \left \| P_{gt} - \sum _{i}{\hat {W}_i \odot P_{c_i}} \right \|^2_F 





 






(4.13)

where Ŵi represents the weighting map for each WB setting ci, and ⊙ denotes the

Hadamard product. This objective ensures that the corrected image is aligned with the

true color-balanced reference by enforcing a direct per-pixel fidelity constraint.

To enforce spatial consistency and prevent artifacts in the corrected images, a

smoothing loss is introduced, which regularizes the weighting maps by penalizing abrupt

variations across spatial dimensions. This is implemented using horizontal and vertical

Sobel filters with kernel size 3× 3, denoted as ∇x and ∇y, respectively.

  \label {eq:smooth} \mathcal {L}_s = \sum _{i}{\left \| \hat {W}_i \ast \nabla _x \right \|^2_F + \left \| \hat {W}_i \ast \nabla _y \right \|^2_F } 



  





  




(4.14)

where ∗ represents the convolution operation. By enforcing smooth transitions in the

weighting maps, this loss mitigates discontinuities in the corrected image, ensuring per-

ceptually coherent WB adaptation across different regions.

The final optimization objective combines both loss components as follows.

  \mathcal {L} = \mathcal {L}_r + \lambda \mathcal {L}_s     (4.15)

where λ is the regularization coefficient, set to 100 in our experiments. This formulation

balances accurate WB correction with spatial consistency across the weighting maps.

4.2.1.3 Post-processing

Two post-processing steps are used to further refine the learned weighting maps

and enhancing the final sRGB image quality. First, multi-scale ensembling generates
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multi-scale weighting maps, which are then bilinearly upsampled to a high resolution

and averaged to achieve smooth and accurate weighting. Next, edge-aware smoothing

is applied to the weighting maps using a fast bilateral solver [144], guided by the high-

resolution input image to preserve edges and fine details in the final corrected image. It is

worth noting that these operations are not proposed in this work, but are applied to ensure

a fair comparison with prior methods. Together, these enhancements improve the consis-

tency and realism of the output, which ensures that the corrected image closely resembles

a naturally white-balanced photograph.

4.2.2 Illumination as Distribution Statistics

Following this, we conducted several analyses to explore how different illumina-

tion settings, particularly those with multiple light sources, affect chromaticity channels

and feature representations in images corrected for white balance. These analyses, pre-

sented in Figures 4.5, 4.6, and 4.7, focus on two key aspects: chromaticity channel distri-

butions and feature distribution statistics. By examining chromaticity distributions in the

U and V channels and [CLS] token feature statistics (i.e., mean, standard deviation, skew-

ness and kurtosis) under varying lighting conditions, we aim to reveal the limitations of

our first WB correction approach that relies solely on lower-order statistics representing

the style factor.

4.2.2.1 Feature Distribution Discrepancies Under Varying WB Settings

To examine the impact of WB settings on feature representations, we analyze sta-

tistical variations in VGG-derived features under different illumination conditions. This

analysis highlights the limitations of traditional WB correction approaches that align only

lower-order statistics and motivates the use of exact distribution matching.

Figure 4.4 illustrates the statistical differences in the VGG features under three

WB settings- Cloudy, Shade, and Tungsten- using three representative images from the
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Figure 4.4: Chromaticity channel distributions under different lighting conditions.

Cube+ dataset [26]. The left column displays ground truth images along with their al-

tered versions, while the right column presents the percentage differences in statistical

measures (i.e., mean, variance, skewness and kurtosis) relative to ground truth images.

The results demonstrate that, while mean and variance show moderate variations, higher-

order statistics such as skewness and kurtosis exhibit significant deviations, particularly

under strong color temperature shifts.

These findings indicate that aligning only lower-order statistics may be insufficient

for robust WB correction, as it fails to capture the full distributional changes induced by

different lighting conditions. The observed discrepancies motivate the use of EFDM,

which explicitly aligns entire feature distributions rather than focusing solely on first- and

second-order moments. By addressing lower- and higher-order differences, EFDM en-

hances the robustness of color correction, particularly representing different WB settings.
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Figure 4.5: Chromaticity channel distributions under different lighting conditions.

4.2.2.2 Chromaticity Channel Distributions under Multiple Illuminants

Figure 4.5 illustrates the variations in the chromaticity channel distributions un-

der different lighting conditions, using samples from three different camera models (i.e.,

Galaxy, Nikon, and Sony). Each row presents, from left to right: a ground truth white

balanced image, an image with multiple illuminants, and the corresponding histograms

for the U and V chromaticity channels. This analysis provides insight into how different

lighting conditions, specifically multi-illuminant scenes, impact the distribution of color

information within the U and V channels.

As observed, the U and V channel histograms for the white balanced images show

relatively narrow distributions with lower skewness and kurtosis values, which reflects a

more uniform color spread. This narrower range suggests that in the absence of complex

61



lighting variations, the color information remains consistent across the image, suggest-

ing a balanced chromaticity. Such uniform distributions imply that the color channels

maintain a predictable pattern, with minimal deviation from the mean, as expected in a

controlled, single-illuminant setting.

However, in images with mixed illumination, the U and V channel distributions

become significantly wider and more skewed. This widening of the distributions is in-

dicative of a broader range of color values being introduced by the varied lighting sources,

with each source contributing its own unique spectral characteristics to the scene. This

shift towards wider, skewed distributions underscores the complexity introduced by multi-

illuminant scenarios, where each light source interacts with scene elements in distinct

ways, which results in unpredictable chromatic shifts. The elevated skewness reflects an

asymmetry in the color distribution, where certain hues may become more dominant due

to specific illuminants, while kurtosis points to the presence of extreme chromatic vari-

ations or outliers within the distribution, which leads to a tailed spread of color values.

Such variations are indicative of non-uniform color casts imposed by the overlapping ef-

fects of multiple illuminants, which lead to higher-order distortions in the chromaticity

distributions. These distortions not only affect the global color balance but also introduce

localized shifts in chromatic values. This further complicates the WB correction process.

4.2.2.3 Multi-Illuminant Effects on Feature Distributions across Cameras

In this analysis, we present three samples from different cameras (i.e., Galaxy,

Nikon, and Sony, ordered by row) that illustrate the ground truth white balanced image,

an illuminated scene with at least two light sources, and the corresponding [CLS] token

feature distributions. The histograms on the right depict the distribution of normalized

[CLS] token features under these lighting conditions, which allows us to observe the

impact of illumination on feature statistics.
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Figure 4.6: CLS token distribution statistics for samples from different cameras.

The variations observed in feature distributions underscore the significant impact

of multiple illuminants on feature representation. This reveals that methods aligning only

basic statistics, as in our prior approach, can fall short. Although our earlier method ef-

fectively aligned mean and variance to handle simpler, more uniform lighting scenarios, it

faces limitations in more complex settings with multiple light sources. Such environments

often involve interactions between various illuminants with different spectral properties,

leading to color shifts that are neither predictable nor uniformly distributed across the

image. This complexity suggests a need for a more nuanced approach that extends be-

yond lower-order statistical alignment to fully capture the chromatic shifts introduced by

multi-illuminant lighting.

Our analysis shows that higher-order statistics, such as skewness and kurtosis,
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display pronounced variations between images corrected for white balance and those cap-

tured under multi-illuminant settings. This indicates that multi-illuminant conditions in-

troduce non-Gaussian characteristics into the feature space, which results in distributions

that are both asymmetrical (skewed) and have heavier tails (high kurtosis). These devia-

tions capture the intricate chromatic interactions introduced by each illuminant, reflecting

the influence of multiple light sources on color representation. The limitations of aligning

only mean and variance in such cases become apparent, as this approach may inade-

quately represent the full scope of chromatic distortions, which leads to suboptimal WB

correction under diverse lighting conditions.

4.2.2.4 Analysis of Feature Distribution Statistics across Illumination Settings

To evaluate the impact of illumination on feature representations in WB corrected

images, we analyzed the distribution statistics of the [CLS] token extracted from ViT

[4] across three different cameras (i.e., Galaxy, Nikon, and Sony) in the LSMI dataset

[8]. Specifically, we compared the distribution characteristics (i.e., mean, standard devi-

ation, skewness, and kurtosis) of the [CLS] token for images under different illumination

settings (i.e., single and multiple illuminants) and their corresponding WB corrected ver-

sions. As discussed in Section 2.3.2.1, the [CLS] token, which serves as a global represen-

tation in ViT, encapsulates style information effectively. Its aggregation of feature-level

details provides a comprehensive view of image characteristics, including illumination.

To substantiate this, we perform an analysis on the capacity of the [CLS] token to capture

and represent style-related information, particularly in terms of illumination variations

across different scenes.
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Figure 4.7: CLS token distribution statistics for illuminated vs. white balanced images
across three cameras in the LSMI dataset.

The results, displayed in Figure 4.7, indicate that higher-order statistics (i.e., skew-

ness and kurtosis) capture more substantial deviations between illuminated and WB cor-

rected images than lower-order statistics (i.e., mean and standard deviation). This is par-

ticularly evident across all three cameras, where the mean and standard deviation exhibit

relatively minor differences between illumination conditions, largely aligning along the

diagonal line that represents equality between illuminated and WB settings. In contrast,

skewness and kurtosis show a significant spread, which reflects the non-Gaussian charac-

teristics of scene lighting in real-world conditions.
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These findings highlight that while lower-order statistics, such as mean and stan-

dard deviation, provide some alignment between different illumination settings, they fall

short in capturing the complex variations introduced by non-uniform or multi-source

lighting. Higher-order statistics (skewness and kurtosis) offer a more nuanced representa-

tion of these variations, which reveal intricate illumination effects on feature distributions.

This underscores the need for full distribution matching over simple alignment of lower-

order moments. By incorporating higher-order statistics through EFDM, our framework

can provide a more comprehensive representation of illumination, thus enhancing WB

correction accuracy, particularly in challenging multi-illuminant scenarios. EFDM thus

enables a more robust illumination modeling by preserving both lower- and higher-order

statistical moments, which facilitates realistic WB corrected outputs across diverse light-

ing conditions.

4.2.3 Leveraging Feature Distribution Matching for WB Correction

Building upon our initial approach of learning style factors for WB correction,

our next approach further refines the style representation by moving from a simple align-

ment of feature statistics to exact matching them (via Exact Feature Distribution Match-

ing (EFDM) [30]). While alignment-based strategies like AdaIN only align mean and

variance, they often fail to capture the intricate and complex lighting variations found in

real-world scenes. Relying solely on lower-order statistics limits the model’s ability to

generalize across scenes under illumination based on non-Gaussian lighting distributions,

which leads to suboptimal WB correction, especially in multi-illuminant scenarios.

To address the limitations of alignment-based strategies, we propose a novel deep

learning architecture, namely FDM WB, which utilizes feature distribution matching to

capture the full distribution of features across varying illuminants. Inspired by the ap-

proach in StyleGAN [45] to constructing style spaces from random noise, we employ a
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pretrained VGG network [48] to generate a style feature space by applying projection ma-

trices to features extracted under different WB conditions. Unlike the previous approach,

which aligns only basic statistics such as mean and variance, this model directly matches

the cumulative distribution functions (CDFs) of feature statistics while constructing a

style space of illumination in scenes. This preserves higher-order moments and thus pro-

vides a more accurate and global representation of lighting as a style factor. The proposed

method (i.e., WB correction via feature distribution matching) establishes a foundation

for generating corrected images by adjusting WB settings in a way that better captures the

nuanced effects of different lighting conditions.

The implementation leverages a U-shaped Transformer-based architecture [5],

which is well suited to handle spatial dependencies over large areas, capturing subtle

lighting variations across different parts of the scene. With a similar practice in our first

approach, but integrating EFDM within new architecture instead of AdaIN, our network

learns to effectively capture and match the distributional shifts of features under various

WB conditions. This alignment of empirical distributions, rather than only mean and

variance, facilitates a more robust and adaptable color correction process, which achieves

greater fidelity in WB correction for both single- and mixed-illuminant environments.

4.2.3.1 From Alignment to Exact Matching with EFDM

As mentioned in Section 2.2.3, EFDM distinguishes itself from conventional sta-

tistical alignment methods, such as AdaIN or GAN-based approaches, by focusing on

aligning the entire feature distribution rather than solely lower-order statistics, such as

mean and variance. While traditional methods ensure alignment of basic statistical prop-

erties, they fail to capture higher-order moments, including skewness and kurtosis, which

are critical for representing the complex and non-Gaussian characteristics of illumination

distributions in real-world scenes.

67



To conceptualize this difference, standard alignment methods can be likened to

matching the central tendencies and overall spread of two distributions, analogous to

aligning the height and width of hills. However, this approach neglects finer structural

details, such as asymmetries or additional peaks within the distributions, which can signif-

icantly influence the performance of WB correction, especially under challenging multi-

illuminant conditions. EFDM addresses this limitation by aligning the cumulative distri-

bution functions (CDFs) of feature statistics, thereby ensuring a more complete represen-

tation of the illumination distribution.

By aligning the entire distribution, EFDM enables the model to accurately capture

and correct both subtle and complex lighting variations. This capability is particularly ad-

vantageous in multi-illuminant scenarios, where lighting variations are inherently intricate

and non-uniform. Consequently, EFDM provides a robust foundation for WB correction,

which can achieve improved global consistency and local color fidelity compared to our

prior methods that rely on simpler statistical alignment techniques. This makes EFDM

uniquely suited to address the challenges of multi-illuminant WB correction.

4.2.3.2 Style Extraction Mechanism

Our proposed architecture comprises a multi-head Style Extractor module that

projects features, encoded by a pretrained VGG network, into a latent style vector w. Each

WB setting (e.g., Tungsten, Daylight, Shade) is processed through VGG, with concate-

nated features forming the input for the Style Extractor module. This module generates

style feature vectors si, with each vector linked to a specific encoder level. The multi-head

structure of this module applies affine transformations at each level, which adapts feature
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Figure 4.8: Our proposed architecture (FDM WB) for White Balance correction.

statistics to accommodate illumination complexity. This process is formalized as follows

  \begin {aligned} \mathbf {z} &= \text {concat}\left (VGG(\mathbf {I_T}), VGG(\mathbf {I_D}), VGG(\mathbf {I_S}) \right ), \\ \mathbf {w} &= SE(\mathbf {z}), \\ \mathbf {s}_i &= s_i(\mathbf {w}), \end {aligned}        

 

 

(4.16)

where IT, ID, and IS denote input images under different WB conditions, and SE repre-

sents the Style Extractor module.

4.2.3.3 Uformer with Feature Distribution Matching

The proposed model adopts a U-shaped Transformer architecture, which utilizes

Locally-enhanced Window Transformer (LeWin) blocks, with EFDM layers for robust

WB correction. LeWin blocks can capture long-range dependencies within localized win-

dows while controlling computational overhead. Within each block, injected style infor-

mation, color temperature or illumination in our scenario, is processed. Through EFDM,

the model shifts feature distributions to align with target style spaces generated by the

Style Extractor, which learns to represent a pure white-balanced style. This is achieved

by optimizing an objective function that guides the generation of accurate weighting maps

for each WB setting. Analogously to StyleGAN’s mapping network that transforms noise
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into a style space for facial attributes, the Style Extractor in our method generates a dis-

tinct style space tailored for white balance, enabling precise adjustment under various

illumination conditions. This process is formalized as

  \begin {aligned} \mathbf {f_i} &= LeWin(\mathbf {c_i}), \\ \mathbf {\Tilde {f_i}} &= EFDM(\mathbf {f_i}, \mathbf {s_i}), \\ \mathbf {f_{i+1}} &= DS(\mathbf {\Tilde {f_i}}) \end {aligned}  

  

 

(4.17)

where ci is the input at the ith encoder level, si denotes the target style feature vector, f̃i is

the EFDM-aligned feature map, and fi+1 is the downsampled output. The decoder mirrors

the encoder’s structure, using skip connections to ensure spatial detail preservation. As

aforementioned before, the final sRGB outputs are produced by linearly blending the input

images and the corresponding weighting maps, as illustrated in Figure 4.2 and formulated

in Equation 4.11. The overall architecture of Uformer with Feature Distribution Matching

for WB correction (FDM WB) is illustrated in Figure 4.8.

To facilitate a fair comparison with prior studies, our optimization combines re-

construction and smoothing losses with the same hyperparameters. The reconstruction

loss Lr minimizes the discrepancy between corrected and ground truth images as

  \mathcal {L}_r = || \mathbf {I_{gt}} - \mathbf {I_{c}} ||^2_F      (4.18)

where Igt represents the ground truth image, and || · ||2F denotes the Frobenius norm.

The smoothing loss Ls regularizes weighting map edges using Sobel filters, addressing

artifacts along horizontal and vertical axes as

  \mathcal {L}_s = \sum \nolimits _{t \in WB}|| W_t * \nabla _x ||^2_F + || W_t * \nabla _y ||^2_F 



       (4.19)

where ∇x and ∇y are Sobel filters with 3× 3 kernels. Our final objective function is as

  \mathcal {L} = \mathcal {L}_r + \lambda \mathcal {L}_s     (4.20)

where λ is set to 100, aligning with previous studies to ensure comparability.
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4.2.4 Feature Distribution Statistics as a Loss Objective

Building upon our foundational approaches of treating illumination as a style fac-

tor, this final approach leverages EFDM applied specifically to the [CLS] token in Vision

Transformers (ViT) [4]. Unlike earlier methods that introduced specialized architectural

modules for adaptive feature normalization or feature alignment through exact matching

within the Uformer architecture, this approach simplifies the architecture while targeting

the global style representation captured by the [CLS] token. By incorporating a novel

EFDM-based loss function, we enable precise alignment of the distributional character-

istics of illuminated and ground truth white balanced scenes, focusing particularly on the

higher-order statistics, which are critical to capturing complex illumination variations in

scenes, as presented in analysis in Section 4.2.2.

In Vision Transformers (ViTs), the [CLS] token is commonly used as a global

representation of the entire image, as it aggregates feature information across all patches

in the input image [55]. This aggregation property makes the [CLS] token particularly

well-suited for capturing scene-wide style characteristics, which includes the variations

in illumination. Unlike lower-level features, which primarily represent localized spatial

details, the [CLS] token encapsulates global attributes. These attributes include color

balance, illumination sources, and chromatic consistency, thus serving as an ideal proxy

for style information within images.

Previous analyses, as discussed in Section 4.2.2, highlight that lighting in multi-

illuminant scenes introduces non-Gaussian characteristics in feature distributions, which

are manifested as skewness and kurtosis variations. These higher-order moments are cru-

cial for capturing the full extent of lighting variations in complex scenes, as simple align-

ment of mean and variance fails to address these intricacies. The [CLS] token, because of

its global representation, inherently includes these higher-order statistical nuances. Lever-

aging EFDM on the [CLS] token allows the model to match not just the basic statistics
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but the entire feature distribution, which encompasses both the lower- and higher-order

moments that define illumination-based style variations.

4.2.4.1 Proposed objective function

The core of the proposed approach is an EFDM-based loss function that aims to

exactly match the [CLS] token distributions between the predicted and ground truth white

balanced images. This matching, as an optimization objective, ensures that the model

captures and corrects both simple and complex lighting variations across scenes, which

enables more accurate WB correction in multi-illuminant scenarios. Our proposed loss

function is formulated as a feature distribution alignment process, where the [CLS] token

distributions of the predicted image are matched with those of the ground truth image by

minimizing their distributional discrepancy.

Using a pretrained ViT as a feature extractor, we obtain the [CLS] token from both

the predicted and ground truth images. This [CLS] token, denoted as  f_{\text {pred}}  for the predicted

image and  f_{\text {gt}}  for the ground truth, acts as a compact and comprehensive representation

of the entire image. By design, the [CLS] token aggregates information across all input

patches during the attention mechanism of the ViT, which makes it a powerful summary

feature for global image characteristics.

The [CLS] token exhibits the unique capability of encapsulating the style of each

image, particularly capturing illumination characteristics such as intensity, color temper-

ature, and the interplay of multiple light sources. This characteristic makes it highly

suitable for tasks that require modeling complex illumination conditions. Unlike patch-

level features, which retain localized information, the [CLS] token inherently captures

the global illumination context by considering inter-dependencies among all patches in

the image. This global perspective is critical for accurate WB correction, as lighting vari-

ations often manifest in both local and global contexts within a scene.
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Furthermore, by focusing on the [CLS] token, we significantly reduce the com-

plexity of feature matching. Instead of matching high-dimensional feature maps or patch-

level representations, the model considers a single vector per image. This reduction in di-

mensionality simplifies the computational process, while ensuring that the critical global

illumination information is retained. The compact representation provided by the [CLS]

token enables efficient learning of matching feature distributions, particularly in scenarios

involving complex, non-uniform lighting conditions. This approach also ensures scala-

bility, allowing the model to generalize effectively across diverse datasets and lighting

scenarios while maintaining computational efficiency.

EFDM ensures that the [CLS] token distributions between the predicted and ground

truth images are matched across their entire cumulative distribution functions (CDFs),

capturing all moments of the distribution, including skewness and kurtosis. This approach

effectively accounts for the non-Gaussian characteristics introduced by multi-illuminant

conditions, so that the model can manage complex lighting variations with high accu-

racy. Using the [CLS] token as the basis for feature distribution matching, the approach

balances computational simplicity with representational richness. The [CLS] token, as

a compact yet holistic representation of global image characteristics, effectively encap-

sulates illumination-related style information. This synergy between EFDM and distri-

bution matching of the [CLS] token creates a robust foundation for precise color and

illumination adjustments, making it particularly effective for WB correction in complex,

multi-illuminant scenarios.

Our proposed loss function is defined as

  L_{\text {EFDM}}(f_{\text {pred}}, f_{\text {gt}}) = \frac {1}{n} \sum _{i=1}^{n} \left [ f_{\text {pred}}[i] - f_{\text {gt}}[\text {rank}(f_{\text {pred}}[i])] \right ]^2  








 (4.21)

where  f_{\text {pred}}  and  f_{\text {gt}}  are the [CLS] token vectors of the predicted and ground truth images,

respectively.  \text {rank}(f_{\text {pred}}[i])  returns the index corresponding to the rank of the  i -th value of

 f_{\text {pred}}  in the sorted vector  f_{\text {gt}} .  n is the number of elements in the [CLS] token feature vector
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(i.e., the dimension). This loss function effectively matches the sorted distributions of  f_{\text {gt}} 

to the rank-sorted distribution  f_{\text {pred}} , which ensures the precise matching of the higher-

order statistics.

The practical implementation of EFDM involves computing a rank-based trans-

formation of the feature values in the predicted and target feature maps, followed by a

point-wise comparison. Instead of relying on absolute intensity values, EFDM operates

by sorting the feature values in both the predicted and reference feature representations

and applying a transformation based on their relative ranks. This approach makes the loss

function invariant to scale and intensity variations, thus ensuring that feature alignments

remain consistent under different conditions.

The rank transformation, which is applied independently per feature channel, en-

sures that corresponding features are matched in a way that reflects their statistical rela-

tionships rather than their absolute magnitudes. This process enables EFDM to effectively

capture distributional discrepancies between feature representations and enforce feature-

level alignment without being affected by variations in scale, intensity, or structural dis-

tortions. Unlike conventional loss functions that rely on mean and variance normalization,

EFDM aligns the entire feature distribution, allowing for a more precise optimization tar-

get in the context of WB correction.

A simplified pseudocode representation of this implementation is provided in Al-

gorithm 1, detailing the step-by-step process of computing our proposed loss function.

The rank transformation within the algorithm is implemented using the argsort func-

tion, which determines the sorted order of the feature values, followed by gather, which

maps these sorted indices back to their original positions to produce rank indices. This

formulation ensures that the ranking process is numerically stable and is consistently ap-

plied across feature channels.

Our latest proposed approach marks a paradigm shift in optimization by enforcing
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EFDM on the [CLS] token as the objective of optimization. This shifts from enhancing

neural network modules, yet depending basic objective functions to developing a sophisti-

cated loss function that explicitly focuses on full distribution alignment. This shift enables

the model to better capture both lower- and higher-order moments of the feature distri-

bution, and helps to address complex illumination dynamics in multi-illuminant scenes.

Unlike previous methods that focus on basic statistics such as mean and variance, EFDM

effectively aligns the entire distribution to the target, including asymmetries and tail char-

acteristics. This refined optimization perspective ensures the preservation of intricate

lighting details while maintaining global illumination consistency and local color fidelity,

which makes it a more suitable solution for challenging WB correction tasks.

Instead of introducing a new architecture or retaining the Style Modulator module

injected into Uformer in our previous approach, we focus solely on applying the Uformer

[5] and UNet [59] architectures, both with and without the proposed loss function, to ad-

dress the challenging multi-illuminant scenarios of the LSMI dataset [8]. The integration

of EFDM as the objective demonstrates significant improvements in handling the com-

plex lighting variations inherent to such scenes, which showcases the adaptability of the

proposed loss function and its critical role in enhancing the performance of these archi-

tectures under diverse illumination conditions.
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5. EXPERIMENTS

This chapter presents the experimental framework designed to evaluate the three

proposed approaches for WB correction under single- and multi-illuminant conditions.

The progression of these approaches—from learning style factors for WB correction to

leveraging exact feature matching within architectures, and finally simplifying the model

to use exact feature matching as a standalone objective function—provides a comprehen-

sive exploration of the trade-offs between model complexity and performance.

The experiments aim to address the following key objectives:

• Quantitative validation: Assessing the effectiveness of each proposed approach in

correcting WB across diverse illumination scenarios, particularly mixed-illuminant

conditions (i.e., single and multi).

• Impact of exact distribution matching via EFDM: Evaluating the contribution

of EFDM, both as a module integrated into the architecture and as a standalone

objective function, in achieving superior alignment of feature distributions.

• Model simplification and performance trade-offs: Investigating how the removal

of architecture-specific modules and the sole reliance on EFDM as a loss function

affect performance, generalizability, and computational efficiency.

For the evaluation, the RenderedWB dataset [20] is used for single-illuminant

benchmarks, while their synthetic Multi-Illuminant Evaluation Set provided a controlled

multi-illuminant testing environment for the earlier methods. For the final approach, the

LSMI dataset [8] is used, as it offers a well-curated benchmark for challenging real-

world multi-illuminant scenarios. By leveraging these datasets, the experiments transi-

tion from single-illuminant benchmarks to multi-illuminant challenges, which highlights

the strengths and limitations of each proposed approach. This progression underscores
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the practical relevance of the proposed methodology in handling increasingly complex

lighting scenarios.

5.1 Experimental Setup

This section outlines the datasets and training details that are used to evaluate

the proposed approaches for WB correction. It includes details on the training datasets,

evaluation protocols, metrics, and computational environments used in all experiments.

All experimental details for the proposed approaches are presented in Table 5.1.

5.1.1 Datasets and Evaluation Protocols

The first two proposed approaches were trained and evaluated on the RenderedWB

dataset [6], which contains 65,000 sRGB images captured by various cameras with spe-

cific pre-defined WB settings. These WB settings include two configurations: {t, f,

d, c, s} (i.e., Tungsten at 2800K, Fluorescent at 3800K, Daylight at 5500K, Cloudy

at 6500K, and Shade at 7500K) and {t, d, s} (i.e., a subset of the former). Each

image in the dataset has a corresponding ground truth image that is accurately white-

balanced. Figure 5.1 presents the t-SNE visualization of the training images of the Ren-

deredWB dataset, derived from their corresponding Principal Component Analysis (PCA)

feature vectors. For quantitative evaluation, we utilized Cube+ [1] and the synthetic multi-

illuminant evaluation set proposed by Afifi et al. [2]. Cube+ comprises 1,707 single-

illumination, color-calibrated images captured using a Canon EOS 550D camera across

different environments. The synthetic multi-illuminant evaluation set consists of 150 ren-

dered images, which are created using Autodesk 3Ds Max, featuring multiple illumination

scenarios. Furthermore, qualitative evaluations were performed on the MIT-Adobe FiveK

dataset [7], which includes 5,000 images captured by DSLR cameras and retouched by

professional photographers.

The Large Scale Multi-Illuminant (LSMI) dataset, introduced by Kim et al. [8],
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Figure 5.1: t-SNE visualization of the training images of the RenderedWB dataset, based
on their corresponding PCA feature vectors. Obtained from [6].

is used for training and evaluation in the final proposed approach, due to its unique suit-

ability for multi-illuminant scenarios. The LSMI dataset comprises 7,486 meticulously

annotated images captured in more than 2,700 diverse indoor and outdoor scenes, utiliz-

ing three different camera models: Samsung Galaxy Note 20 Ultra, Sony α9, and Nikon
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Figure 5.2: Example images from the LSMI dataset (first row) alongside their corre-
sponding illuminant coefficient maps (second row).

D810. Each image in the dataset provides pixel-wise ground truth information about il-

luminant chromaticity, per-pixel illumination levels, and the mixture ratios of multiple

illuminants within the scene, as illustrated in Figure 5.2. This rich annotation enables an

unprecedented level of detail in modeling and correcting complex illumination conditions,

which makes the dataset a benchmark choice for advancing WB correction methods in

multi-illuminant scenarios. Furthermore, the dataset includes images with varying color

temperatures, scene compositions, and lighting complexities, which reflect real-world di-

versity and challenges in illumination scenarios. Its extensive annotations and challenging

conditions offer an ideal testbed for evaluating the efficacy of our last proposed approach,

which aims to capture higher-order statistical characteristics of illumination distributions.
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5.1.2 Training Details

The training procedures for the first two approaches adhere to a consistent setup.

RenderedWB images were randomly cropped at resolutions of 64×64 and 128×128, and

no data augmentation techniques were applied. For the first approach, Adam Optimizer

[145] is used with β1 = 0.9 and β2 = 0.999, a learning rate of 1 × 10−4, and a batch

size of 32. The second approach utilized the AdamW optimizer [146] with the same

hyperparameters, but the batch size was increased to 40, composed of 4 patches from 10

distinct samples per batch. Both approaches were trained for 200 epochs without learning

rate scheduling.

Post-processing operations were applied to enhance the weighting maps before

generating the final WB corrected outputs. These included multi-scale inference of the

weighting maps (ms) and edge-aware smoothing (eas) using a fast bilateral solver [144],

as mentioned in Section 4.2.1.3. For inference, the models processed low-resolution in-

put images (i.e., 384 × 384) rendered under pre-defined WB settings, which produces

weighting maps resized to the input resolution for final blending.

For the last approach, the training is performed using both U-Net [59] and Uformer

[5] architectures, with and without the proposed objective function. The architectures

were adapted to have three input channels and two output channels for predicting UV

chromaticity channels for WB correction. The input resolution is fixed at 256×256 pixels

to balance computational efficiency and model performance. The training process spans

2,400 epochs, with a batch size of 32, using the Adam optimizer with hyperparameters

set to β1 = 0.5 and β2 = 0.999. The initial learning rate is set to 2 × 10−4, with a linear

decay starting after 800 epochs to ensure stable convergence. To simulate real-world vari-

ations, data augmentation techniques are incorporated for illumination sources, including

random cropping, illumination augmentation, and adjustments to Saturation, and Value

ranges. The saturation is varied between 0.2 and 0.8, while the value ranges are restricted
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Table 5.1: Experimental details for the proposed approaches

Style WB FDM WB FDM Loss
Dataset RenderedWB [6] LSMI [8]

Architecture
IFRNet [41] Uformer [5] U-Net [59] & Uformer [5]

Style Modulator Style Modulator FDM Loss
AdaIN [44] EFDM [30] EFDM [30]

Input Size 64× 64
256× 256

128× 128
Batch Size 32 40 32
Optimizer Adam [145] AdamW [146] Adam [145]
Learning Rate 1× 10−4 1× 10−4 2× 10−4

Epochs 200 200 2400

Augmentation None Illumination Color
Random Cropping

Post-Processing Multi-scale inference
None

Edge-aware smoothing

Evaluation Metrics
Pixel Accuracy

Angular ErrorAngular Error
Color Difference

GPU Setup 2× RTX 2080Ti 2× RTX 2080Ti 2× A100
Framework PyTorch [147]

between 0.01 and 0.99 to avoid extreme lighting distortions. Random cropping ensures

that the model learns from varying spatial contexts within the dataset, and the augmen-

tation of illumination helps to emulate real-world lighting inconsistencies. This training

framework is designed to fully exploit the detailed annotations of the LSMI dataset and to

evaluate the robustness and efficacy of the proposed method in correcting multi-illuminant

WB scenarios.

5.1.3 Metrics for Evaluation

To assess the performance of the proposed approaches, different evaluation met-

rics are employed based on the approach and its specific goals.

• Mean Squared Error (Mean Squared Error (MSE)): Measuring the pixel-wise

difference between the ground truth and corrected images. This metric is used
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for the first two approaches to evaluate pixel-level accuracy in single- and multi-

illuminant scenarios.

• Mean Angular Error (MAE): Evaluating the angular difference between the vec-

tor forms of the ground truth and the predicted images in RGB color space. For the

last approach, both mean and median MAE are specifically reported to balance the

evaluation of average correction accuracy and robustness to outliers in the challeng-

ing multi-illuminant scenarios of the LSMI dataset.

• Color Difference (∆E 2000): Quantifying the perceptual color differences in the

L*C*H* color space between the ground truth and the predicted images. This

metric is applied only for the first two approaches for single- and multi-illuminant

benchmarks.

To provide a comprehensive analysis for the first two approaches, we report the

mean values and quantile averages (i.e., first, second, and third quantiles) of the metrics

for each evaluation set. For the last approach, the focus is on the mean and median values

of MAE to emphasize its robustness in multi-illuminant scenarios.

5.1.4 Computational Environment

The experiments for the first two approaches are conducted on a computational

setup equipped with 2× NVIDIA RTX 2080Ti GPUs. For the last approach, the exper-

iments utilize a computational setup with 2× NVIDIA A100 GPUs, which provides the

necessary resources to manage the large dataset and high computational demands. All

implementations are carried out using the PyTorch framework [147], building upon prior

works in WB correction [20, 2, 8].
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5.2 Results and Discussion

This section presents the evaluation of the proposed approaches under various ex-

perimental setups. The results are analyzed comprehensively to highlight the performance

of the methods in both single- and multi-illuminant scenarios. Benchmark datasets, in-

cluding the Cube+ [1] dataset, the LSMI [8] dataset, and the synthetic mixed-illuminant

evaluation set [2], are used to provide quantitative and qualitative evaluations. In addi-

tion, ablation studies are conducted to validate design choices and practical applications,

such as night photography, are explored to demonstrate the robustness of the proposed

approaches.

5.2.1 Experimental Results for Style WB

Our first proposed approach, namely Style WB, models lighting in both single- and

mixed-illuminant scenarios as a style factor to enhance WB correction. This strategy ex-

tends WB correction method proposed by Afifi et al. [2] as aiming to refine performance

by leveraging detailed weighting maps and avoiding explicit illuminant estimation. Be-

low, the results of the method are discussed in single-illuminant and mixed-illuminant

contexts, followed by insights from ablation studies and its application in night photogra-

phy.

5.2.1.1 Benchmark on Single-Illuminant Scenarios

To evaluate the performance in single illumination scenarios, we conduct exper-

iments using the Cube+ dataset [1]. The results, summarized in Table 5.2, compare the

proposed method with state-of-the-art approaches [17, 19, 6, 126, 2]. Metrics such as

Mean Squared Error (MSE), Mean Angular Error (MAE), and Color Difference (∆E

2000) are reported for patch sizes p = 64 and p = 128, along with different WB settings

({t,d,s} and {t,f,d,c,s}).
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Table 5.2: Benchmark on single-illuminant Cube+ dataset [1]. The top results are indi-
cated with colored cells as, the best: green, the second: yellow, the third: red.

Method MSE MAE ∆E 2000 SizeMean Q1 Q2 Q3 Mean Q1 Q2 Q3 Mean Q1 Q2 Q3
FC4 [17] 371.90 79.15 213.41 467.33 6.49◦ 3.34◦ 5.59◦ 8.59◦ 10.38 6.60 9.76 13.26 5.89 MB
Quasi-U CC [19] 292.18 15.57 55.41 261.58 6.12◦ 1.95◦ 3.88◦ 8.83◦ 7.25 2.89 5.21 10.37 622 MB
KNN WB [6] 194.98 27.43 57.08 118.21 4.12◦ 1.96◦ 3.17◦ 5.04◦ 5.68 3.22 4.61 6.70 21.8 MB
Interactive WB [126] 159.88 21.94 54.76 125.02 4.64◦ 2.12◦ 3.64◦ 5.98◦ 6.20 3.28 5.17 7.45 38 KB
Deep WB [20] 80.46 15.43 33.88 74.42 3.45◦ 1.87◦ 2.82◦ 4.26◦ 4.59 2.68 3.81 5.53 16.7 MB

Mixed WB [2]
p = 64, WB={t,d,s} 168.38 8.97 19.87 105.22 4.20◦ 1.39◦ 2.18◦ 5.54◦ 5.03 2.07 3.12 7.19 5.09 MB
p = 64, WB={t,f,d,c,s} 161.80 9.01 19.33 90.81 4.05◦ 1.40◦ 2.12◦ 4.88◦ 4.89 2.16 3.10 6.78 5.10 MB
p = 128, WB={t,f,d,c,s} 176.38 16.96 35.91 115.50 4.71◦ 2.10◦ 3.09◦ 5.92◦ 5.77 3.01 4.27 7.71 5.10 MB

Style WB (ours)
p = 64, WB={t,d,s} 92.65 6.52 14.23 35.01 2.47◦ 0.82◦ 1.44◦ 2.49◦ 2.99 1.36 2.04 3.32 61.0 MB
p = 64, WB={t,f,d,c,s} 151.38 29.49 56.35 125.33 4.18◦ 2.13◦ 3.03◦ 4.81◦ 5.42 3.11 4.42 6.76 61.1 MB
p = 128, WB={t,d,s} 88.03 7.92 17.73 45.01 2.61◦ 0.93◦ 1.58◦ 2.85◦ 3.24 1.50 2.30 3.95 61.2 MB
p = 128, WB={t,f,d,c,s} 100.24 10.77 37.74 70.18 3.09◦ 1.15◦ 2.61◦ 3.87◦ 3.96 1.59 3.55 5.51 61.3 MB

Our method achieves the best performance in most cases, particularly with smaller

patch sizes (i.e., p = 64) and fewer WB settings (i.e., {t,d,s}). These configurations

enable for more precise modeling of the illuminants by reducing the complexity of blend-

ing multiple WB settings. Although increasing the number of WB settings introduces

additional channels during training, it also increases the complexity of modeling correla-

tions, which can hinder performance for specific metrics.

In addition to quantitative results, we evaluate the qualitative performance of our

method using the MIT-Adobe FiveK dataset [7]. Figure 5.3 presents examples of pre-

dicted weighting maps and WB correction results. The images demonstrate that our

method represents the illuminants in a detailed and interpretable manner, accurately dif-

ferentiating between multiple illuminants within the same scene. This capability enables

our approach to outperform prior methods, as it produces more precise weighting maps

and achieves competitive per-pixel performance on WB correction in the sRGB space.

Moreover, in Figure 5.4, we introduce the comparison of the qualitative results of our

initial WB correction approach and recent methods [20, 2], along with the default AWB

versions, on the selected samples from the same dataset. It shows that our proposed

method achieves competitive per-pixel performance on WB correction in the sRGB space

compared to the recent methods.
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Figure 5.3: Example of predictions for the weighting maps and WB correction results by
blending these maps. We render the linear raw DNG files for the images in MIT-Adobe
FiveK dataset [7] (id: 323, 2808) in different WB settings.

Table 5.3: Benchmark on mixed-illuminant evaluation set [2]. The top results are indi-
cated with colored cells as, the best: green, the second: yellow, the third: red.

MSE MAE ∆ E 2000Method Mean Q1 Q2 Q3 Mean Q1 Q2 Q3 Mean Q1 Q2 Q3
Gray Pixel [104] 4959.20 3252.14 4209.12 5858.69 19.67◦ 11.92◦ 17.21◦ 27.05◦ 25.13 19.07 22.62 27.46
Grayness index [105] 1345.47 727.90 1055.83 1494.81 6.39◦ 4.72◦ 5.65◦ 7.06◦ 12.84 9.57 12.49 14.60
KNN WB [6] 1226.57 680.65 1062.64 1573.89 5.81◦ 4.29◦ 5.76◦ 6.85◦ 12.00 9.37 11.56 13.61
Interactive WB [126] 1059.88 616.24 896.90 1265.62 5.86◦ 4.56◦ 5.62◦ 6.62◦ 11.41 8.92 10.99 12.84
Deep WB [20] 1130.60 621.00 886.32 1274.72 4.53◦ 3.55◦ 4.19◦ 5.21◦ 10.93 8.59 9.82 11.96

Mixed WB [2]
p = 64, WB={t,d,s} 819.47 655.88 845.79 1000.82 5.43◦ 4.27◦ 4.89◦ 6.23◦ 10.61 9.42 10.72 11.81
p = 64, WB={t,f,d,c,s} 938.02 757.49 961.55 1161.52 4.67◦ 3.71◦ 4.14◦ 5.35◦ 12.26 10.80 11.58 12.76
p = 128, WB={t,d,s} 830.20 584.77 853.01 992.56 5.03◦ 3.93◦ 4.78◦ 5.90◦ 11.41 9.76 11.39 12.53
p = 128, WB={t,f,d,c,s} 1089.69 846.21 1125.59 1279.39 5.64◦ 4.15◦ 5.09◦ 6.50◦ 13.75 11.45 12.58 15.59

Style WB (ours)
p = 64, WB={t,d,s} 868.01 649.36 889.00 1026.98 5.73◦ 4.48◦ 5.42◦ 6.34◦ 12.11 10.42 12.12 13.36
p = 64, WB={t,f,d,c,s} 1051.07 760.86 1024.00 1332.50 6.30◦ 4.43◦ 6.01◦ 7.69◦ 14.43 11.90 13.11 16.15
p = 128, WB={t,d,s} 822.77 576.52 840.67 1025.26 5.11◦ 3.93◦ 4.85◦ 5.51◦ 11.65 10.63 11.86 13.02
p = 128, WB={t,f,d,c,s} 834.28 629.95 842.71 1005.59 5.71◦ 4.57◦ 5.54◦ 6.19◦ 11.79 9.84 12.19 13.00

5.2.1.2 Benchmark on Multi-Illuminant Scenarios

We evaluate the performance of our first proposed approach on the synthetic

mixed-illuminant evaluation set [2] to further analyze its robustness under challenging

multi-illuminant scenarios. The quantitative results are summarized in Table 5.3. These

85



Figure 5.4: Comparison of the qualitative results of our WB correction method and the
other methods on the selected samples from MIT-Adobe FiveK dataset [7]. Image indices
from top to bottom: 2882, 606, 659, 2431, 2550.

results indicate that no single method consistently outperforms others in all metrics,

which simply highlight the complexity of multi-illuminant scenes. However, our method

achieves superior performance in terms of MSE, which demonstrates its strength in min-

imizing pixel-wise intensity differences. For MAE and ∆E 2000 metrics, our method

produces competitive results compared to the state-of-the-art approaches.

The qualitative comparisons presented in Figure 5.5 further validate the efficacy
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Figure 5.5: Comparison of the performance of the prior work [4] and our method on
mixed-illuminant dataset.

of our approach. The weighting maps generated by our network show significant im-

provements in detail-oriented representation of the lighting, especially in object regions

affected by multiple illumination sources. These maps accurately differentiate between

various illuminants that impact the same object, which enhances the blended WB correc-

tion results. This capability is achieved through modeling the lighting as a style factor,

which captures more nuanced illumination characteristics compared to prior methods.

Despite these strengths, the results on the synthetic dataset reveal certain limita-

tions. Synthetic data often contains sharper edges and transitions compared to real-world

images, and our blending strategy, while highly detailed, does not include such synthetic
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Table 5.4: The ablation study on using multi-scale (ms) weighting maps and applying
edge-aware smoothing (eas) to weighting maps.

Models MSE MAE ∆E 2000

Single-illuminant dataset, WB = {t,d,s}, p = 64

ms = 0, eas = 0 98.55 2.71◦ 3.32
ms = 1, eas = 0 93.78 2.59◦ 3.15
ms = 0, eas = 1 97.20 2.66◦ 3.28
ms = 1, eas = 1 92.65 2.47◦ 2.99

Mixed-illuminant dataset, WB = {t,d,s}, p = 128

ms = 0, eas = 0 878.58 5.05◦ 12.12
ms = 1, eas = 0 843.50 5.04◦ 11.70
ms = 0, eas = 1 843.64 5.04◦ 11.98
ms = 1, eas = 1 822.77 5.11◦ 11.65

samples during training. This exclusion may lead to color discrepancies at the edge of the

object in the final output, which negatively affects quantitative metrics such as ∆E 2000

and MAE. Nevertheless, the overall results demonstrate the potential of our method to

handle multi-illuminant scenarios with high accuracy and interpretability.

5.2.1.3 Ablation Study on Post-processing

To evaluate the contribution of multi-scale weighting maps (ms) and edge-aware

smoothing (eas) used as post-processing, ablation studies are carried out on single and

mixed illumination datasets. The results, summarized in Table 5.4, demonstrate that the

application of these operations achieves the best overall performance in most metrics.

On the single-illuminant dataset, with experimental settings of WB={t,d,s} and

p = 64 where p is the patch size, incorporating both techniques improves the MSE from

98.55 to 92.65, the MAE from 2.71◦ to 2.47◦, and the ∆E 2000 from 3.32 to 2.99. Simi-

larly, for the mixed-illuminant evaluation set, with experimental settings of WB={t,d,s}

and p = 128 where p is the patch size, applying both operations shows the best MSE
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(822.77) and ∆E 2000 (11.65), while achieving comparable MAE (5.11◦) to other config-

urations. These results highlight the ability of ms to better capture illuminant variations

and of eas to refine blending at edges, which leads to better overall WB correction.

Although ms alone provides significant improvements, the addition of eas further

enhances the results, especially in reducing color differences. These findings validate the

effectiveness of both techniques in improving WB correction accuracy. Although alterna-

tive approaches, such as total variation regularization, could be explored, their integration

would require significant modifications and is beyond the scope of this work.

5.2.2 Experimental Results for FDM WB

Our second proposed approach, referred as FDM WB, leverages feature distribu-

tion matching to address the challenges of WB correction under diverse lighting condi-

tions. This method builds upon the principles of modeling illumination as a style factor,

which introduces a distribution-based learning mechanism to ensure robustness across

varying scenarios. By aligning feature distributions between input and reference domains,

FDM WB achieves improved color constancy without relying on explicit illuminant esti-

mation. The following sections provide a detailed discussion of the results, which covers

both single- and mixed-illuminant datasets, and are supported by qualitative comparisons

and ablation studies that highlight the efficacy of the proposed method.

5.2.2.1 Benchmark on Single-Illuminant Scenarios

Our second proposed approach, FDM WB, demonstrates exceptional performance

in single-illuminant scenarios. This evaluation operates on the Cube+ dataset [1], where

our method achieves the lowest values in all quantitative metrics, including MSE, MAE,

and color difference (∆E 2000). These results highlight the framework’s ability to deliver

superior WB correction, which outperforms both recent and traditional methods. Quan-

titative comparisons, presented in Table 5.5, reveal that FDM WB achieves remarkable
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Table 5.5: Benchmark on single-illuminant Cube+ dataset [1]. ↓ denotes that lower is
better.

MSE ↓ MAE ↓ ∆E 2000 ↓
Methods Mean Q1 Q2 Q3 Mean Q1 Q2 Q3 Mean Q1 Q2 Q3

FC4 [17] 371.90 79.15 213.41 467.33 6.49◦ 3.34◦ 5.59◦ 8.59◦ 10.38 6.60 9.76 13.26
Quasi-U CC [19] 292.18 15.57 55.41 261.58 6.12◦ 1.95◦ 3.88◦ 8.83◦ 7.25 2.89 5.21 10.37
KNN WB [6] 194.98 27.43 57.08 118.21 4.12◦ 1.96◦ 3.17◦ 5.04◦ 5.68 3.22 4.61 6.70
Interactive WB [126] 159.88 21.94 54.76 125.02 4.64◦ 2.12◦ 3.64◦ 5.98◦ 6.20 3.28 5.17 7.45
Deep WB [20] 80.46 15.43 33.88 74.42 3.45◦ 1.87◦ 2.82◦ 4.26◦ 4.59 2.68 3.81 5.53
MIMT [138] - - - - 2.52◦ 0.98◦ 1.38◦ 2.96◦ 2.88 1.94 2.42 2.87
Mixed WB [2] 161.80 9.01 19.33 90.81 4.05◦ 1.40◦ 2.12◦ 4.88◦ 4.89 2.16 3.10 6.78
Style WB [24] 88.03 7.92 17.73 45.01 2.61◦ 0.93◦ 1.58◦ 2.85◦ 3.24 1.50 2.30 3.95
DeNIM + Mixed WB [148] 99.70 13.89 24.71 43.88 2.49◦ 1.07◦ 1.62◦ 2.41◦ 3.44 1.95 2.74 3.78
DeNIM + Style WB [148] 83.41 13.23 21.46 37.44 1.93◦ 0.77◦ 1.09◦ 1.70◦ 2.73 1.62 2.03 2.71
FDM WB (ours) 79.35 6.46 16.84 35.76 1.35◦ 0.56◦ 1.01◦ 1.66◦ 1.40 0.98 1.41 2.55

improvements, with an MSE of 79.35, an MAE of 1.35◦, and a ∆E 2000 score of 1.40.

These results set a new benchmark for single-illuminant correction, which showcases

approximately 42% improvement in ∆E 2000 and 48% in MAE compared to our first

proposed method. These significant improvements highlight the effectiveness of exact

distribution matching in modeling lighting as a style factor, leading to improved spatial

coherence and perceptual quality.

The qualitative results for single-illuminant scenarios, depicted in Figure 5.6 and

Figure 5.7, illustrate the performance of FDM WB under 3 and 5 WB settings. The for-

mer highlights the corrected outputs for 3 WB settings (i.e., D, S, T), where the weighting

maps demonstrate the model’s ability to learn spatially consistent blending of WB set-

tings for effective correction. Specifically, our model generates perceptually accurate

images by preserving natural tones and details while achieving minimal color discrepan-

cies across the entire scene. For example, natural skin tones are accurately reproduced

without introducing undesirable color shifts, which emphasizes spatial consistency. The

latter represents the results under the more complex 5 WB setting (i.e., D, S, T, F, C).

This figure further validates the robustness of our proposed approach. As shown in Fig-

ure 5.7(f), the corrected image aligns closely with human perception of white balance,

while the weighting maps reflect enhanced adaptability to varying regions in the scene.
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Figure 5.6: Illustration of WB correction result of FDM WB by learning the weighting
maps for 3 WB settings. Sample 2550 in MIT-Adobe FiveK dataset.

Figure 5.7: Illustration of WB correction result of FDM WB by learning the weighting
maps for 5 WB settings. Sample 892 in MIT-Adobe FiveK dataset.

For instance, the sink and mirror areas in the bathroom scene, which are affected by dif-

fering illuminants, are corrected uniformly, and this showcases the ability of proposed

approach to blend contributions from all five settings and generate a globally consistent

result.
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Figure 5.8: Qualitative comparison of the visual results of FDM WB with the prior works
on the selected samples from MIT-Adobe FiveK dataset [7]. Image indices from top to
bottom: 323, 659, 2053, 2431.

These visual results emphasize the benefits of integrating EFDM into the Uformer

backbone to model illumination as a style factor. Through exact matching of feature

statistics, the proposed approach effectively captures contextual information across di-

verse image regions, and achieves improved perceptual quality and spatial consistency, as

demonstrated by the smooth weighting maps and lack of artifacts.

Moreover, Figure 5.8 offers a comparative analysis of our results against state-of-

the-art methods such as Deep WB [20], Mixed WB [2], and our first proposed approach

[24], namely Style WB. Our approach consistently delivers perceptually superior results,

effectively mitigating color distortions and preserving fine details. This highlights the
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Table 5.6: Benchmark on mixed-illuminant evaluation set [2]. ↓ denotes that lower is
better.

MSE ↓ MAE ↓ ∆E 2000 ↓
Methods Mean Q1 Q2 Q3 Mean Q1 Q2 Q3 Mean Q1 Q2 Q3

Gray Pixel [104] 4959.2 3252.1 4209.1 5858.7 19.67◦ 11.92◦ 17.21◦ 27.05◦ 25.13 19.07 22.62 27.46
Grayness In. [105] 1345.5 727.9 1055.8 1494.8 6.39◦ 4.72◦ 5.65◦ 7.06◦ 12.84 9.57 12.49 14.60
KNN WB [6] 1226.6 680.7 1062.6 2573.9 5.81◦ 4.29◦ 5.76◦ 6.85◦ 12.00 9.37 11.56 13.61
Interact. WB [126] 1059.9 616.2 896.9 1265.6 5.86◦ 4.56◦ 5.62◦ 6.62◦ 11.41 8.92 10.99 12.84
Deep WB [20] 1130.6 621.0 886.3 1274.7 4.53◦ 3.55◦ 4.19◦ 5.21◦ 10.93 8.59 9.82 11.96
Mixed WB [2] 819.5 655.9 845.8 1000.8 5.43◦ 4.27◦ 4.89◦ 6.23◦ 10.61 9.42 10.72 11.81
Style WB [24] 822.8 576.5 840.7 1025.3 5.11◦ 3.93◦ 4.85◦ 5.51◦ 11.65 10.63 11.86 13.02
FDM WB (ours) 761.9 513.9 818.4 969.3 5.95◦ 4.64◦ 5.88◦ 6.90◦ 10.16 8.75 9.81 11.69

advantage of combining exact feature statistics matching with a Transformer-based archi-

tecture, which enhances spatial consistency while preserving a high level of detail.

5.2.2.2 Benchmark on Multi-Illuminant Scenarios

The results of the mixed-illuminant benchmark, presented in Table 5.6, under-

score the effectiveness of FDM WB compared to the existing state-of-the-art approaches.

In particular, our method achieves the lowest MSE score of 761.9, significantly improving

over prior works, including Mixed WB [2] (819.5) and Style WB [24] (822.8). This reduc-

tion in MSE highlights the model capability of FDM WB to minimize luminance errors

even under complex mixed-illuminant scenarios. In terms of color difference (∆E2000),

FDM WB shows better performance with a mean score of 10.16, which outperforms both

Mixed WB (10.61) and Style WB (11.65). The improvement is particularly noticeable

in the third quartile (Q3), where FDM WB achieves 11.69, compared to 13.02 for our

first proposed approach. This highlights the performance advantage of exactly matching

feature statistics over solely aligning them, particularly in a wide range of challenging

cases.

Although MAE for FDM WB (5.95◦) is slightly higher than Mixed WB (5.43◦)

and Style WB (5.11◦), it remains competitive. This trade-off can be attributed to the

method’s focus on achieving better perceptual color correction and spatial consistency,
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Figure 5.9: Qualitative comparison of the visual results of FDM WB with the prior works
on the selected samples from the mixed-illuminant evaluation set [2]. Image indices from
top to bottom: 5, 16, 20, 24.

which can be indicated as evidence for improvements on ∆E2000 scores. In general,

these results validate the power of combining feature distribution matching with a Trans-

former architecture. By leveraging exact statistical alignment of features from the scenes

with mixed-illuminant regions, FDM WB consistently achieves robust and accurate WB

correction, which establishes itself as a strong candidate for spatially varying illumination

scenarios.

The qualitative evaluation results, presented in Figure 5.9, visually compare the

performance of FDM WB with the state-of-the-art approaches, namely Mixed WB, Style

WB, and Deep WB, in various mixed illumination scenarios. It is important to note that,

due to the synthetic nature of the dataset, all methods, including the proposed approach,

could not exhibit visually promising results. None of the methods achieve consistently
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high performance from a qualitative perspective, as the inherent differences in detail and

complexity between synthetic data and real-world scenarios prevent the former from fully

replicating the latter’s challenges.

Despite these limitations, FDM WB demonstrates notable strengths in specific

aspects of perceptual quality. For example, in the first row, the intricate interplay of

shadows and highlights in the dark-toned living room is preserved without introducing

artifacts, which can demonstrate the ability of FDM WB to maintain detail under chal-

lenging lighting conditions. Similarly, in the second row, the focus shifts to the wall area,

where FDM WB effectively balances the cool and warm tones, which ensures accurate

color correction without compromising the integrity of the brick texture. Unlike prior

methods, which either over-saturate or leave residual color casts, FDM WB achieves a

neutral tone and enhances the realism of the scene while preserving the fine details of the

bricks. These results highlight the potential of FDM WB to handle mixed illumination

scenarios more effectively than its predecessors, even if qualitative differences remain

subtle in synthetic environments.

5.2.2.3 Ablation Study

To gain a deeper understanding, we perform an ablation study to systematically

evaluate the individual contributions of each component in the proposed method and ex-

amine the effects of various parameters on the training process.

Impact of Style Extractor and EFDM: Initially, we investigate the impact of building

a style feature space using the Style Extractor module and the feature distribution match-

ing learning strategy in the proposed method. Table 5.7 presents the quantitative results

that compare the Uformer-only architecture with the proposed method in both evaluation

datasets. The results clearly demonstrate that, while the Uformer-only architecture offers

a notable performance improvement, particularly when compared to prior works, most
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Table 5.7: Ablation study on the impact of employing the Style Extractor module and
EFDM on Cube+ dataset [1] and mixed-illuminant evaluation set [2].

Method MSE ↓ MAE ↓ ∆E 2000 ↓
Cube+ dataset

p = 64, Uformer [5] 107.38 2.80◦ 3.46
p = 64, FDM WB 91.34 2.38◦ 2.88

p = 128, Uformer [5] 105.68 2.77◦ 3.39
p = 128, FDM WB 79.35 1.35◦ 1.40

Mixed-illuminant evaluation set
p = 64, Uformer [5] 939.52 4.98◦ 12.97
p = 64, FDM WB 780.74 4.85◦ 10.84

p = 128, Uformer [5] 1067.37 5.99◦ 14.43
p = 128, FDM WB 761.95 5.95◦ 10.16

Table 5.8: Ablation study on style factor learning strategy on Cube+ dataset [1] and
mixed-illuminant evaluation set [2].

Method MSE ↓ MAE ↓ ∆E 2000 ↓
Cube+ dataset

AdaIN [44] 92.47 1.78◦ 1.94
EFDM 79.35 1.35◦ 1.40

Mixed-illuminant evaluation set
AdaIN [44] 818.99 5.41◦ 11.01

EFDM 761.95 5.95◦ 10.16

of the observed performance gains are attributable to the feature distribution matching

learning strategy. For example, on the Cube+ dataset, integrating this strategy with the

Uformer architecture leads to significant reductions in all metrics. This effect is even

more pronounced with larger patch sizes and is also evident in the mixed-illuminant eval-

uation set. Furthermore, it is important to note that the performance of the Uformer-only

architecture lags behind previous methods, including Mixed WB [2] and Style WB [24].

EFDM vs. AdaIN: This ablation study investigates the impact of using EFDM for

feature statistics alignment compared to employing AdaIN, which focuses on aligning

low-level statistics without achieving exact matching. Table 5.8 summarizes the results
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Figure 5.10: Analyzing the impact of aligning and matching feature distributions on the
weighting maps generated by our proposed model on the selected sample from MIT-Adobe
FiveK dataset [7]. Image index: 2808.

for the datasets used in our quantitative evaluation, comparing the effectiveness of learn-

ing style factors via EFDM and AdaIN. In single-illuminant scenarios, employing EFDM

demonstrates significant improvements in all metrics, including a 15% reduction in MSE,

a 24% reduction in MAE, and a 27% reduction in ∆E 2000, compared to AdaIN. Simi-

larly, while both strategies show promising results on the mixed-illuminant evaluation set,

EFDM outperforms AdaIN, particularly in MSE and color difference metrics.

The qualitative results of the MIT-Adobe FiveK dataset [7] further validate the

superior ability of EFDM to model lighting as a style factor, and surpassing AdaIN in

both perceptual quality and spatial consistency. As illustrated in Figure 5.10, the exact

matching of feature statistics yields more precise weighting coefficients in the output

maps compared to AdaIN’s alignment-based strategy, which relies solely on low order

statistics. This precision significantly improves the overall quality of WB correction.

Patch Size and WB Settings: The effect of varying patch sizes and input WB settings

is detailed in Table 5.9. Larger patch sizes (i.e., p = 128) consistently yield better perfor-

mance in both datasets. For example, on the Cube+ dataset, increasing the patch size from

97



Table 5.9: Ablation study on changing patch size and using different WB settings on
Cube+ dataset [1] and mixed-illuminant evaluation set [2].

Method MSE ↓ MAE ↓ ∆E 2000 ↓
Cube+ dataset

p = 64, {t,d,s} 91.34 2.38◦ 2.88
p = 64, {t,f,d,c,s} 118.51 3.65◦ 4.56
p = 128, {t,d,s} 79.35 1.35◦ 1.40

p = 128,{t,f,d,c,s} 78.76 1.54◦ 1.69
Mixed-illuminant evaluation set

p = 64, {t,d,s} 780.74 4.85◦ 10.84
p = 64, {t,f,d,c,s} 815.24 4.82◦ 11.36
p = 128, {t,d,s} 761.95 5.95◦ 10.16

p = 128,{t,f,d,c,s} 822.12 4.73◦ 11.08

64 to 128 reduces MSE from 91.34 to 79.35 and MAE from 2.38◦ to 1.35◦. Similarly, on

the mixed-illuminant evaluation set, the larger patch size achieves superior MSE and ∆E

2000 values, which underscores the role of greater contextual awareness in accurate WB

correction.

When considering the simplified WB setting spectrum (i.e., {t,d,s}), the impact

is significant for both datasets. For p = 64, our approach achieves an MSE of 91.34 and an

MAE of 2.38◦ on the Cube+ dataset, while it achieves an MSE of 780.74 and a ∆E 2000

of 10.84 on the mixed-illuminant evaluation set. In contrast, using the full spectrum (i.e.,

{t,f,d,c,s}) results in higher MSE and MAE values for both datasets. Specifically,

the results presented report 118.51 for MSE and 3.65◦ for MAE on the Cube+ dataset,

while it shows 815.24 for MSE and 11.36 for ∆E 2000 on the mixed-illuminant evalu-

ation set. For p = 128, this trend continues, with the simplified spectrum consistently

outperforming the full spectrum. On the mixed-illuminant evaluation set, the simplified

spectrum achieves an MSE of 761.95, compared to 822.12 for the full spectrum. These

findings underscore that reducing the number of WB settings simplifies the non-linear

interpolation process during the generation of weighting maps. This reduction improves
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Table 5.10: Ablation study on the effect of post-processing operation on the performance
of our proposed model on Cube+ dataset [1].

Method MSE ↓ MAE ↓ ∆E 2000 ↓ Time (s)
ms ✗, eas ✗ 85.20 1.33◦ 1.35 0.292
ms ✗, eas ✓ 80.11 1.29◦ 1.32 11.051
ms ✓, eas ✗ 80.72 1.37◦ 1.41 0.337
ms ✓, eas ✓ 79.35 1.35◦ 1.40 11.228

spatial consistency and overall performance. We can conclude that striking an appro-

priate balance between patch size and WB setting complexity allows the model to more

effectively adapt to diverse illumination scenarios.

Post-Processing: Building on the foundation of our first approach, as discussed in Sec-

tion 5.2.1.3, we extend our analysis to the second approach by evaluating the effects of two

post-processing operations applied during inference. These experiments systematically

assess the contributions of these operations to the overall performance of our proposed

method. Table 5.10 presents the quantitative results in the selected metrics. Although

post-processing operations, particularly edge-aware smoothing (eas), offer marginal im-

provements in performance, their advantages are diminished when considering the addi-

tional processing time they require. Importantly, even without any post-processing oper-

ations, FDM WB outperforms other techniques that rely on such operations, which con-

firms its robustness and efficiency.

Complexity Analysis: To evaluate the impact of adopting a Transformer-based archi-

tecture on computational cost, we conduct a comprehensive analysis comparing the com-

plexities of our proposed method with those of previous methods, both with and with-

out post-processing operations. Table 5.11 summarizes the average running time in sec-

onds, the total number of parameters, and the number of floating-point operations for

each model architecture. Specifically, Mixed WB uses the GridNet architecture [149],
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Table 5.11: Comparison of the complexity of FDM WB and the prior methods with their
post-processing tricks.

Method Time (s) # of Params (M) FLOPs (G)
Mixed WB [2] + ms + eas 10.390

1.32 9.78Mixed WB [2] + eas 10.279
Mixed WB [2] + ms 0.228

Mixed WB [2] 0.212

Style WB [24] + ms + eas 10.342

15.31 126.60
Style WB [24] + eas 10.307
Style WB [24] + ms 0.232

Style WB [24] 0.217

FDM WB (ours) + ms + eas 11.228

20.53 61.92
FDM WB (ours) + eas 11.041
FDM WB (ours) + ms 0.337

FDM WB (ours) 0.292

Style WB utilizes the IFRNet architecture [41], while our proposed method is built on the

Uformer architecture.

Despite incorporating a Transformer-based backbone, our analysis shows that

the proposed method maintains FLOPs and model parameter count comparable to or

even lower than those of IFRNet-based approaches used in Style WB. This efficiency

is achieved through architectural optimizations, including a reduced number of layers in

both the encoder-decoder structure and the projector layers of the Style Extractor module.

These modifications ensure a balanced trade-off between computational efficiency and

performance while keeping the computational demands within a manageable range.

Although global self-attention mechanisms in Transformer-based architectures in-

herently increase memory usage and inference time, the Uformer backbone demonstrates

its ability to model global dependencies without excessive computational overhead. In

contrast, IFRNet-based methods rely on localized convolutions, which, despite their lim-

ited capacity to capture global features, contribute significantly to higher FLOPs. This

100



Figure 5.11: Qualitative comparison of the visual results of FDM WB with the prior
works under challenging lighting conditions. Image indices from top to bottom: 596, 619,
581 in MIT-Adobe FiveK dataset [7].

highlights the advantage of Uformer in spatial WB correction, where global feature inter-

actions play a critical role.

The proposed method achieves substantial improvements in spatial WB correction

performance, justifying the modest increase in parameter count and runtime. Further-

more, its runtime efficiency ensures near-real-time applicability, which makes it a viable

candidate for further optimization and practical deployment in real-world imaging tasks.

Challenging Scenarios: To further demonstrate the effectiveness of our proposed method

in challenging lighting conditions, we present Figure 5.11, which features examples from
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scenarios such as nighttime photography [150, 151], mixed illumination with strong high-

lights and complex multi-color lighting. For this comparison, we use images with indices

596, 619, and 581. Notably, existing methods often struggle to fully preserve color fi-

delity, leading to issues such as oversaturation or undercorrection in these difficult en-

vironments. In contrast, our approach effectively adapts to these conditions, delivering

visually balanced outputs with accurate illumination correction while preserving the nat-

ural appearance of the scene.

5.2.3 Experimental Results for FDM Loss

Tables 5.12, 5.13, and 5.14 present the benchmark results on the LSMI dataset

[8], which showcases the performance of various methods including our third proposed

approach, Uformer with FDM Loss, in single-, multi-, and mixed-illuminant scenarios

for Galaxy, Nikon, and Sony cameras, respectively. The benchmark results on the LSMI

dataset in three camera setups demonstrate the effectiveness of our third proposed ap-

proach, Uformer with FDM Loss, which integrates the EFDM-based loss function into

the optimization process of the Uformer architecture for WB correction. By leveraging a

Transformer-based architecture, our method ensures robust performance under challeng-

ing multi-illuminant conditions while maintaining accuracy in single-illuminant scenar-

ios.

5.2.3.1 A Novel Metric for Generalization: The Multi-to-Single Ratio

To further evaluate the robustness of WB correction methods, we introduce the

Multi-to-Single Ratio (MSR), defined as the ratio of the mean MAE in multi-illuminant

scenarios to the mean MAE in single-illuminant scenarios. Assuming a sufficient number

of samples are used to evaluate both scenarios, this metric quantifies how effectively a

model generalizes to conditions under multiple illumination without overfitting to single-

illuminant scenarios. A lower MSR indicates better adaptability, as it reflects minimal
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Table 5.12: Benchmark results on the LSMI dataset for the Galaxy camera. The Multi-
to-Single Ratio reflects the robustness of the models in multi-illuminant scenarios.

Model Single Multi Mixed MSR

Mean Median Mean Median Mean Median

Pix2Pix [143] 6.53 2.17 4.28 2.63 5.66 2.44 0.66
Gijsenij et al. [82] 7.49 6.04 12.38 9.57 10.09 7.43 1.65
Bianco et al. [118] 4.15 3.30 5.56 4.33 4.89 3.83 1.34
HDRNet [152] r. [8] 2.85 2.20 3.13 2.70 3.06 2.54 1.10
HDRNet [152] r. [9] - - - - 3.06 2.54 -
UNet [59] r. [8] 2.95 1.86 2.35 2.00 2.63 1.91 0.80
UNet [59] r. [9] 2.85 - 2.55 - 2.68 2.17 0.90

One-Net [139] 1.19 0.75 2.16 1.53 1.57 0.93 1.82
AID [9] 1.19 - 2.03 - 1.66 1.41 1.71
Uformer + FDM (ours) 1.78 1.48 1.87 1.69 1.83 1.62 1.05

performance degradation between single- and multi-illuminant conditions.

We propose this ratio to provide a deeper understanding of the robustness of the

model. Overfitting to single-illuminant scenarios often leads to a sharp decline in per-

formance under multi-illuminant conditions, which are more representative of real-world

settings. By balancing performance across these scenarios, our third proposed approach

demonstrates its ability to address practical challenges in WB correction.

5.2.3.2 Benchmark on the LSMI dataset

In multi-illuminant scenarios, the Uformer with FDM Loss achieves state-of-the-

art performance across all three camera setups, as demonstrated by both the mean and

median MAE values. For the Galaxy camera, Uformer with FDM Loss records a mean

MAE of 1.87 and a median of 1.69, outperforming key competitors such as One-Net (2.16,

1.53). Similarly, for the Nikon camera, the proposed method achieves a mean MAE of

1.54 and a median of 1.12, surpassing One-Net (1.99, 1.43) and other notable methods. On

the Sony camera, Uformer with FDM Loss achieves a mean MAE of 1.67 and a median

of 1.57, which further solidifies its superiority under multi-illuminant conditions. The
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Table 5.13: Benchmark results on the LSMI dataset for the Nikon camera. The Multi-to-
Single Ratio reflects the robustness of the models in multi-illuminant scenarios.

Model Single Multi Mixed MSR

Mean Median Mean Median Mean Median

Pix2Pix [143] 6.1 2.27 4.18 2.76 5.41 2.49 0.77
Bianco et al. [118] 3.18 2.61 4.65 4.19 3.93 3.48 1.18
HDRNet [152] r. [8] 2.76 2.43 3.2 3.01 2.99 2.61 1.07
HDRNet [152] r. [9] - - - - 2.99 2.61 -
UNet [59] r. [8] 1.51 1.14 2.36 1.84 1.95 1.45 1.21
UNet [59] r. [9] 1.49 - 2.30 - 1.92 1.54 1.20

One-Net [139] 1.27 0.67 1.99 1.43 1.53 0.85 1.30
AID [9] 1.11 - 2.26 - 1.71 1.34 1.32
Uformer + FDM (ours) 1.26 0.97 1.54 1.13 1.48 1.05 1.22

Table 5.14: Benchmark results on the LSMI dataset for the Sony camera. The Multi-to-
Single Ratio reflects the robustness of the models in multi-illuminant scenarios.

Model Single Multi Mixed MSR

Mean Median Mean Median Mean Median

Pix2Pix [143] 4.08 1.72 4.37 3.26 4.20 2.20 1.07
Bianco et al. [118] 3.25 2.62 4.38 3.93 3.86 3.19 1.35
HDRNet [152] r. [8] - - - - 3.21 2.89 -
HDRNet [152] r. [9] 2.76 2.43 3.2 3.01 2.99 2.61 1.07
UNet [59] r. [8] 2.83 2.44 3.04 2.78 2.94 2.66 1.07
UNet [59] r. [9] 1.92 - 2.34 - 2.15 1.74 1.22

One-Net [139] 1.45 0.60 2.23 1.65 1.76 0.93 1.54
AID [9] 1.01 - 2.16 - 1.66 1.35 2.14
Uformer + FDM (ours) 1.52 1.39 1.67 1.57 1.61 1.47 1.10

consistent performance across all three camera setups highlights the robustness of the

proposed method in handling challenging lighting conditions. By using EFDM as the

loss function to ensure the exact match of feature distributions, the method effectively

models the interaction of multiple light sources, resulting in superior perceptual quality

and accurate color correction.

Several competing methods demonstrate strong performance in single-illuminant
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scenarios but exhibit significant performance degradation under multi-illuminant condi-

tions, which suggests an overfitting tendency. For instance, on the Galaxy camera, One-

Net achieves a mean MAE of 1.19 in single-illuminant scenarios but increases to 2.16 in

multi-illuminant scenarios, which results in a high MSR value of 1.82. Similarly, AID

on the Sony camera achieves a MSR value of 2.14, which reflects its overreliance on

single-illuminant conditions.

In contrast, the Uformer with FDM Loss demonstrates a much lower MSR value

across all setups, and this indicates its ability to generalize effectively. For the Galaxy,

Nikon, and Sony cameras, the ratios are 1.05, 1.22 and 1.10, respectively. These values

underscore the ability of the method to maintain robust performance in multi-illuminant

conditions without sacrificing accuracy in single-illuminant scenarios.

Traditional methods, such as HDRNet and UNet, while competitive in single-

illuminant scenarios, fail to maintain similar levels of accuracy under multi-illuminant

conditions. For example, HDRNet, reported for the Galaxy camera, achieves a mean

MAE of 2.85 in single-illuminant scenarios but only improves marginally to 3.13 in multi-

illuminant settings. Similarly, UNet achieves a mean MAE of 2.83 on the Sony camera un-

der single-illuminant conditions, but its performance degrades to 3.04 in multi-illuminant

settings.

The results emphasize the importance of balancing single- and multi-illuminant

performance for practical real-world applications. Our proposed approach demonstrates

strong generalization across diverse lighting conditions without overfitting, making it a

highly reliable solution for WB correction. Its superior performance in multi-illuminant

environments, reflected in an MSR value closer to 1, highlights its robustness and adapt-

ability. This resilience stems from the feature distribution matching mechanism, which

aligns feature representations directly rather than relying on pixel-wise intensity compar-

isons or statistical normalization techniques.
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Figure 5.12: Qualitative comparison of illumination estimation results among LSMI-U
[8], AID [9], and our proposed method. Image indices: 525 (Galaxy), 757 (Sony).

Compared methods, such as HDRNet [152] and One-Net [139], optimize illumi-

nation by minimizing direct pixel-level errors. However, this often results in overfitting to

single-illuminant settings and instability when handling complex illumination variations.

In contrast, EFDM maintains the structural integrity of the feature distributions, ensur-

ing that the learned representations remain consistent in different lighting conditions and

preventing excessive adaptation to a specific illuminant type. This stability is particu-

larly critical in multi-illuminant scenarios, where conventional pixel-intensity-based loss

functions struggle with the non-linear interactions of multiple light sources. The con-

sistently low MSR values achieved further validate that distribution matching mitigates

performance degradation under complex illumination settings, making it a more reliable

objective function for real-world applications.

5.2.3.3 Comparison with State-of-the-art

To further assess the effectiveness of our proposed approach, we provide a qual-

itative comparison with LSMI-U [8] and AID [9], as shown in Figure 5.12. Due to the

lack of publicly available models for state-of-the-art methods, direct reproduction of their

results on the LSMI test set was not feasible. Instead, qualitative results for AID were
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extracted from their original paper to make a fair comparison possible. However, OneNet

[139] does not include test set comparisons in its qualitative evaluations, making its in-

clusion impractical.

The results reveal distinct differences in illumination estimation among the meth-

ods. LSMI-U, as a baseline dataset-derived approach, performs reasonably well in WB

correction, but struggles with residual color shifts in complex multi-illuminant scenarios.

AID, designed for illumination decomposition rather than perceptual correction, estimates

chromatic illumination components, which can lead to noticeable deviations in certain re-

gions. In contrast, both variants of our method generate more consistent illumination

maps with fewer artifacts, demonstrating the effectiveness of EFDM as a training objec-

tive to enforce feature distribution alignment and achieve robust WB correction.

Notably, in scenes with strong color casts, the proposed approach, namely Uformer

with FDM Loss, exhibits superior adaptation to multi-illuminant conditions, particularly

in the highlighted regions. The method effectively reduces unwanted tints and main-

tains global color consistency. However, minor deviations remain in illumination maps,

especially in highly saturated regions, which may suggest potential areas for future im-

provements in illuminant adaptation.

5.2.3.4 Ablation Study

Ablation studies systematically evaluate the contributions of the proposed FDM

loss function and its adaptability in different architectures. By isolating the effect of the

loss function and comparing its performance within different architectures, we provide

compelling evidence for the superiority of the proposed methodology in addressing the

complexities of WB correction under diverse illumination scenarios.

The results presented in Table 5.15 illustrate the significant advantages of employ-

ing the FDM loss function over the traditional pixel-wise mean squared error loss. The
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Table 5.15: Ablation study on the proposed loss function using the Uformer architecture.

Camera Loss Single Multi Mixed MSR

Function Mean Median Mean Median Mean Median

Galaxy MSE 2.20 1.65 2.03 1.73 2.05 1.64 0.88
FDM 1.78 1.48 1.87 1.69 1.83 1.62 1.05

Nikon MSE 1.39 1.01 1.72 1.15 1.56 1.10 1.10
FDM 1.31 0.98 1.54 1.12 1.43 1.05 1.08

Sony MSE 2.15 1.54 2.03 1.73 2.08 1.68 0.94
FDM 1.52 1.39 1.67 1.57 1.61 1.47 1.10

key strength of the FDM loss lies in its ability to perform exact feature distribution match-

ing, which ensures that higher-order statistics, such as skewness and kurtosis, are effec-

tively aligned between the predicted and ground truth images. This capability enables the

model to better handle non-Gaussian and highly variable illumination conditions, which

are common in multi- and mixed-illuminant scenarios.

For example, applying the FDM loss to the Uformer architecture significantly

improves performance in multi-illuminant scenarios. For the Galaxy camera, the mean

MAE improves from 2.03 with MSE loss to 1.87 with FDM loss. This demonstrates the

robustness of our proposed loss function under complex lighting conditions. Similarly, for

the Nikon camera, the mean MAE is reduced from 1.56 with MSE loss to 1.43 with FDM

loss, which reflects improved mixed-illuminant performance. These gains result from

the holistic approach of FDM loss to matching feature distributions, effectively capturing

both global and local illumination characteristics.

Unlike MSE loss, which focuses on minimizing pixel-wise intensity differences,

FDM loss captures the intricate relationships among image regions, maintaining global

context while ensuring spatial consistency. This is especially critical in scenarios with

uneven lighting variations throughout the scene. By leveraging higher-order statistical in-

sights derived from feature information, the proposed loss function enhances the model’s

ability to generalize across diverse scenes without overfitting. This capability is reflected
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Table 5.16: Ablation study on the proposed loss function using the UNet architecture.

Camera Loss Single Multi Mixed MSR

Function Mean Median Mean Median Mean Median

Galaxy MSE 2.95 1.86 2.35 2.00 2.63 1.91 0.80
FDM 2.42 1.81 2.14 1.74 2.27 1.79 0.88

Nikon MSE 1.51 1.14 2.36 1.84 1.95 1.45 1.21
FDM 1.40 1.17 1.89 1.33 1.66 1.25 1.14

Sony MSE 2.83 2.44 3.04 2.78 2.94 2.66 1.07
FDM 1.96 1.63 2.10 1.74 2.04 1.67 1.07

in the balanced MSR observed across all three camera setups.

The results in Table 5.16 demonstrate the versatility of the proposed FDM loss

through its significant performance improvements within the UNet architecture. For the

Sony camera, the multi-illuminant mean MAE decreases from 3.04 with MSE loss to

2.10 with FDM loss. Similarly, the mixed-illuminant mean MAE improves from 2.94

to 2.04. These results highlight the adaptability of FDM loss, effectively enhancing the

performance of a convolutional network like UNet, despite its architectural limitations

compared to Uformer.

The seamless integration of FDM loss with both Uformer and UNet architec-

tures underscores its robustness and generalizability as an optimization objective. While

Uformer leverages its Transformer-based design to inherently capture both local and

global image features, the proposed loss function ensures that even UNet, with its more lo-

calized receptive field, achieves substantial performance gains. This adaptability demon-

strates the effectiveness of FDM loss in meeting various architectural requirements while

consistently providing superior performance in various illumination scenarios.

The qualitative comparisons in Figure 5.13, Figure 5.14, and Figure 5.15 show

the efficacy of our last proposed approach, Uformer with FDM loss, in addressing the

challenges posed by multi-illuminant scenarios in the LSMI dataset. Across the three
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camera setups (i.e., Galaxy, Nikon, Sony), our proposed approach consistently outper-

forms its counterparts, including those utilizing conventional loss functions such as MSE

and traditional architectures such as UNet.

The introduction of FDM-based loss represents a significant advancement in per-

formance by enabling exact matching of feature distributions for the [CLS] token, a

critical representation of global image characteristics, as previously detailed in Section

2.3.2.1. By harnessing the [CLS] token’s representational power in the global context, the

FDM loss not only ensures spatial consistency but also preserves intricate lighting details

and color fidelity, particularly in complex multi-illuminant scenarios. Furthermore, as an-

alyzed in Section 4.2.2, the qualitative results substantiate that this advanced optimization

strategy enhances the model’s ability to seamlessly integrate local and global corrections.

This leads to improved robustness and accuracy in WB correction, as evidenced by the

reduced MAE and enhanced uniformity of illumination across all scenes evaluated.

The Uformer architecture further amplifies these gains due to its attention mech-

anisms, which enhance contextual awareness and spatial consistency. While the UNet

architecture struggles with global illumination adjustments, which often introduces resid-

ual color casts, the Uformer architecture excels in preserving fine details and achieving

uniform WB correction. These benefits are particularly noticeable in scenes with high

illumination complexity, such as those in Figure 5.13 and Figure 5.15.

The superiority of Uformer with FDM loss is evident in challenging scenarios

where mixed or multi-illuminant conditions dominate. The results on Galaxy camera (i.e.,

Figure 5.13) highlight the ability of our proposed approach to neutralize strong color casts

while preserving texture and detail. Similarly, the results on Nikon and Sony cameras (i.e.,

Figure 5.14 and Figure 5.15) emphasize the model’s ability to achieve spatially consistent

WB corrections without sacrificing color fidelity.
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Figure 5.13: Visual comparison of WB correction outputs on the Galaxy camera from the
LSMI dataset. Image indices: 312, 323, 896.
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Figure 5.14: Visual comparison of WB correction outputs on the Nikon camera from the
LSMI dataset. Image indices: 63, 221, 934.
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Figure 5.15: Visual comparison of WB correction outputs on the Sony camera from the
LSMI dataset. Image indices: 790, 1202, 1314.
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Figure 5.16: Illustration of failure cases observed in our proposed method. Image in-
dices: 144, 20, 242.

Failure Case Analysis: Although the proposed method demonstrates strong WB cor-

rection performance in various scenarios, certain failure cases highlight its limitations un-

der complex illumination conditions. Figure 5.16 showcases instances where the method

struggles with challenging lighting environments, resulting in deviations from the ground

truth. In these cases, the predicted illumination maps diverge from the reference, partic-

ularly in regions with mixed or highly non-uniform lighting distributions. As a result,

the corrected images exhibit noticeable color shifts, with angular error values remaining

higher than in other cases, and this indicates the impact of these challenges on overall

performance.

A key difficulty arises in handling complex multi-illuminant regions, particularly

when multiple light sources interact, such as natural daylight combined with artificial in-

door lighting. Although the proposed method effectively infers the illumination correctly

in most cases, it can introduce artifacts in these scenarios, where dominant illuminants

vary spatially. This suggests that EFDM may require further refinement to ensure consis-

tent alignment when multiple illuminants influence different regions of the scene. Con-

sequently, corrected images may retain residual color shifts in highly complex lighting

environments.
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Additionally, in cases where strong directional illumination creates pronounced

shadowed and brightly lit areas, minor chromatic inconsistencies can appear in the pre-

dicted illumination maps. This does not necessarily indicate a failure in generalization,

but instead highlights the challenges posed by extreme lighting variations, where global

feature alignment may not fully capture local illumination nuances. While pixel-wise ap-

proaches rely on intensity adjustments to handle such variations, EFDM focuses on the

alignment of the feature distribution, which enhances robustness against global illumina-

tion shifts, but does not explicitly enforce spatial coherence in extreme cases.

Moreover, highly reflective surfaces or strongly saturated regions can introduce

slight deviations in the predicted illumination maps, particularly where illumination dis-

continuities are sharply localized. Despite these limitations, the proposed method con-

sistently delivers strong performance in diverse lighting conditions. These observations

suggest potential areas for further refinement, such as incorporating spatial priors to en-

hance stability in extreme illumination scenarios.

Complexity Analysis: Since EFDM is integrated as a training objective rather than

an architectural modification, it does not increase computational complexity during infer-

ence or deployment. While inference time and model size are determined by the backbone

architecture, a balanced evaluation is conducted by applying EFDM as a loss function to

both CNN-based (i.e., UNet) and Transformer-based (i.e., Uformer) architectures. Among

the compared methods, AID [9] uses an attention-based approach, making its computa-

tional characteristics comparable to Uformer, whereas One-Net [139] and HDRNet [152]

rely on CNN-based feature extraction, similar to UNet. This ensures that the experimental

setup encompasses a diverse range of architectures with similar computational properties,

which demonstrates that integrating EFDM does not introduce additional inference over-

head beyond what is typically expected in existing approaches.
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In conclusion, our final approach effectively delivers robust and reliable perfor-

mance, despite certain limitations, in diverse camera setups and challenging illumination

conditions. These results highlight the practical applicability and versatility of our pro-

posed method in real-world imaging scenarios.
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6. APPLICATIONS AND EXTENSIONS

This chapter discusses the applications and extensions of the proposed methods

by presenting three key works published during this research: Deterministic Neural Illu-

mination Mapping (Deterministic Neural Illumination Mapping (DeNIM)) for resource-

constrained environments and two challenges focusing on night photography rendering,

organized by one of the leading venues in the field of image restoration, which show-

cases real-world implementations of the approaches proposed in this thesis. These works

demonstrate how the main contributions of this thesis can be adapted and extended to

address specific challenges in image restoration and enhancement.

6.1 Deterministic Neural Illumination Mapping (DeNIM)

This extension [148] introduces an efficient WB correction framework for high-

resolution images. It uses deterministic color mapping to align the colors of pixels in

various illumination conditions using learnable projection matrices. DeNIM is designed

to be both resolution-agnostic and model-agnostic, enabling seamless integration with

pre-trained WB correction networks, such as Mixed WB and Style WB.

6.1.1 Architecture

Given a set of high-resolution images with different WB settings I , this proposed

strategy focuses on achieving deterministic illumination color mapping for efficient WB

correction. Although previous work [2, 24] has shown success in learning weighting

maps in low-resolution space and rendering high-resolution WB corrected images through

multi-scale inference, these methods often require additional post-processing steps, such

as smoothing after resizing weighting maps, which limit their practicality. Inspired by

deterministic color style transfer [153], we introduce an illumination mapping strategy

that eliminates the need for such post-processing by directly aligning color distributions
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Figure 6.1: Overall design of Deterministic Neural Illumination Mapping (DeNIM), pro-
posed illumination mapping strategy for high-resolution images.

in high-resolution space, as depicted in Figure 6.1.

First, we downsample the input images I to a resolution compatible with the ar-

chitectures of prior works (i.e., 256×256). Using only the encoder portion of these archi-

tectures, low-resolution images Î are processed to extract rich feature information across

different WB settings. A 1 × 1 convolutional layer, followed by Gaussian Error Linear

Unit (GeLU) activation [154], is applied to the extracted feature maps to obtain latent

representations. These representations are then used to compute an image-adaptive color

mapping matrix d, which is fed into the Deterministic Neural Color Mapping (DNCM)

module [153] to generate the canonical form.

  \mathit {d}^{(k \times k)} = V(E(\mathbf {\hat {I}}))     (6.1)

where E denotes the AWB encoder (i.e., as proposed in [2] or [24]), V stands for the vec-

torization operation performed using a 1×1 convolutional layer followed by an activation

function. It is important to note that DeNIM utilizes pre-trained weights for E and keeps

these weights frozen during training.

For the DNCM to canonical module, the process begins by unfolding the high-

resolution image I into a 2-dimensional matrix with dimensions (HW × 3N), where

118



N represents the number of WB settings, and H and W denote height and width, re-

spectively. Each pixel in I is then transformed into a k-dimensional vector through a

projection matrix P of size (3N × k). The parameter k can be adjusted based on com-

putational resources, but in our design it is set to 32. The extracted image-adaptive color

mapping matrix d is then applied to this k-dimensional vector, enriching the projected

space with contextual information. Following this, two learnable projection matrices, Q

of size (k × k) and R of size (k × 3), are utilized to produce the canonical form. This

module, termed DNCMc, is mathematically represented as follows

  DNCMc(\mathbf {I}, \mathit {d}) = \mathbf {I}^{(HW \times 3)} \cdot \mathbf {P}^{(3 \times k)} \cdot \mathit {d}^{(k \times k)} \cdot \mathbf {Q}^{(k \times k)} \cdot \mathbf {R}^{(k \times 3)}           (6.2)

where · denotes matrix multiplication.

The canonical form is then processed by the DNCM to AWB correction module

(DNCMa). Unlike DNCMc, this module does not include fusion capabilities but focuses

on directly mapping pixel values from the canonical form to their corrected versions for

white-balanced output. Each pixel in the canonical form Ic is first projected onto a k-

dimensional vector using a projection matrix P of size (3×k). Following a design similar

to DNCMc, two additional learnable matrices, Q of size (k×k) and R of size (k×3), are

applied to transform the embedded k-dimensional vector back into the RGB color space.

This process results in the final WB corrected output IAWB. The formal definition of

DNCMa is presented in Equation 6.3.

  \label {eq:dncma} DNCMa(\mathbf {I_c}) = \mathbf {I_c}^{(HW \times 3)} \cdot \mathbf {P}^{(3 \times k)} \cdot \mathbf {Q}^{(k \times k)} \cdot \mathbf {R}^{(k \times 3)}  
    (6.3)

Apart from the self-supervised learning mechanism for DNCM adopted in [153],

our learning objective focuses on minimizing the reconstruction error between the ground

truth and the WB corrected output, as defined in Equation 6.4.

  \label {eq:denim_loss} \mathcal {L} = || \mathbf {I_{GT}} - \mathbf {I_{AWB}} ||^2_F     (6.4)
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where IGT and IAWB represent the ground truth image and the WB corrected output,

respectively. To maintain simplicity and tractability in the training process, we do not

incorporate smoothing loss [2] or perceptual loss [155] into the final objective function.

This design eliminates the decoder component responsible for generating weight-

ing maps in prior works and instead directly computes the illumination color mapping

through two distinct DNCM modules for the canonical form and the WB corrected out-

put. This approach removes the necessity for post-processing weighting maps, thereby re-

ducing time complexity without compromising performance. Furthermore, the pixel-wise

mapping capability, enabled by matrix multiplications, allows the correction model to op-

erate independently of resolution. Furthermore, the flexibility of our design allows for the

seamless integration of any WB correction method to extract rich information from low-

resolution inputs across different WB settings, which makes it inherently model-agnostic.

6.1.2 Experiments

The experimental setup follows the methodology employed in Style WB, where it

utilizes the same dataset and evaluation metrics. Any data augmentation techniques were

not applied during training. DNCM modules were trained from scratch, while the AWB

backbone weights was kept frozen. The resolution of the input images was set to 256

pixels, the training process employing the AdamW optimizer [146], a batch size of 16,

and a learning rate of 1e−4. No post-processing operations were applied during inference.

The benchmark results on the single-illuminant Cube+ dataset [1], presented in

Table 6.1, follow the experimental setup outlined in previous works [2, 24]. Two patch

sizes (i.e., 64 and 128) were employed for the backbone network, and input images

were designed with two sets of WB settings: a default configuration including Tungsten,

Daylight, and Shade, and an extended version incorporating Fluorescent and Cloudy color
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Table 6.1: Benchmark of DeNIM on single-illuminant Cube+ dataset [1]. The top results
are indicated with colored cells as, the best: green, the second: yellow, the third: red.

Method MSE MAE ∆E 2000 SizeMean Q1 Q2 Q3 Mean Q1 Q2 Q3 Mean Q1 Q2 Q3
FC4 [17] 371.90 79.15 213.41 467.33 6.49◦ 3.34◦ 5.59◦ 8.59◦ 10.38 6.60 9.76 13.26 5.89 MB
Quasi-U CC [19] 292.18 15.57 55.41 261.58 6.12◦ 1.95◦ 3.88◦ 8.83◦ 7.25 2.89 5.21 10.37 622 MB
KNN WB [6] 194.98 27.43 57.08 118.21 4.12◦ 1.96◦ 3.17◦ 5.04◦ 5.68 3.22 4.61 6.70 21.8 MB
Interactive WB [126] 159.88 21.94 54.76 125.02 4.64◦ 2.12◦ 3.64◦ 5.98◦ 6.20 3.28 5.17 7.45 38 KB
Deep WB [20] 80.46 15.43 33.88 74.42 3.45◦ 1.87◦ 2.82◦ 4.26◦ 4.59 2.68 3.81 5.53 16.7 MB
MIMT [138] - - - - 2.52◦ 0.98◦ 1.38◦ 2.96◦ 2.88 1.94 2.42 2.87 -

Mixed WB [2]
p = 64, WB={t,d,s} 168.38 8.97 19.87 105.22 4.20◦ 1.39◦ 2.18◦ 5.54◦ 5.03 2.07 3.12 7.19 5.09 MB
p = 64, WB={t,f,d,c,s} 161.80 9.01 19.33 90.81 4.05◦ 1.40◦ 2.12◦ 4.88◦ 4.89 2.16 3.10 6.78 5.10 MB
p = 128, WB={t,f,d,c,s} 176.38 16.96 35.91 115.50 4.71◦ 2.10◦ 3.09◦ 5.92◦ 5.77 3.01 4.27 7.71 5.10 MB

Style WB [24]
p = 64, WB={t,d,s} 92.65 6.52 14.23 35.01 2.47◦ 0.82◦ 1.44◦ 2.49◦ 2.99 1.36 2.04 3.32 61.0 MB
p = 64, WB={t,f,d,c,s} 151.38 29.49 56.35 125.33 4.18◦ 2.13◦ 3.03◦ 4.81◦ 5.42 3.11 4.42 6.76 61.1 MB
p = 128, WB={t,d,s} 88.03 7.92 17.73 45.01 2.61◦ 0.93◦ 1.58◦ 2.85◦ 3.24 1.50 2.30 3.95 61.2 MB
p = 128, WB={t,f,d,c,s} 100.24 10.77 37.74 70.18 3.09◦ 1.15◦ 2.61◦ 3.87◦ 3.96 1.59 3.55 5.51 61.3 MB

DeNIM + Mixed WB [2]
p = 64, WB={t,d,s} 120.14 36.39 77.40 152.96 2.57◦ 1.53◦ 2.17◦ 3.19◦ 5.26 3.38 4.71 6.64 28.7 MB
p = 64, WB={t,f,d,c,s} 129.01 14.39 27.69 57.90 2.67◦ 0.99◦ 1.45◦ 2.29◦ 3.96 2.10 2.85 4.24 28.7 MB
p = 128, WB={t,d,s} 158.58 60.14 115.66 198.59 4.20◦ 2.38◦ 3.77◦ 5.63◦ 5.69 3.91 5.41 7.10 28.8 MB
p = 128, WB={t,f,d,c,s} 99.70 13.89 24.71 43.88 2.49◦ 1.07◦ 1.62◦ 2.41◦ 3.44 1.95 2.74 3.78 28.8 MB

DeNIM + Style WB [24]
p = 64, WB={t,d,s} 65.80 10.06 16.98 28.82 2.03◦ 0.88◦ 1.23◦ 1.93◦ 2.95 1.79 2.33 3.18 196.3 MB
p = 64, WB={t,f,d,c,s} 83.41 13.23 21.46 37.44 1.93◦ 0.77◦ 1.09◦ 1.70◦ 2.73 1.62 2.03 2.71 196.3 MB
p = 128, WB={t,d,s} 80.53 17.59 27.80 44.35 2.16◦ 0.88◦ 1.34◦ 2.16◦ 3.08 1.86 2.37 3.30 196.4 MB
p = 128, WB={t,f,d,c,s} 89.10 11.27 19.34 43.01 2.49◦ 1.24◦ 1.64◦ 2.92◦ 3.16 1.87 2.53 3.35 196.4 MB

temperatures to enhance the versatility of the method. The quantitative results demon-

strate increased efficiency and improved performance in all patch sizes and WB settings,

as evidenced by the evaluation metrics. In particular, the configuration with a patch size

of 64 and all WB settings outperform other configurations by achieving superior per-

formance. The results indicate a significant improvement in the third quantiles of all

evaluation metrics, which reflects the robustness of the strategy for challenging samples.

Furthermore, smaller patch sizes continue to show better illuminant modeling and, in this

case, improved learning of color mappings, consistent with previous observations. How-

ever, MSE displays inconsistencies compared to the other metrics, suggesting that it may

not adequately capture the quality of the color correction and may not be the most suitable

metric for assessing WB correction performance.

The results in Table 6.2 highlight the efficiency of the proposed strategy compared

to previous works in various metrics. Efficiency is assessed based on processing time

(i.e., Time (s)), model complexity in terms of parameter count (i.e., Param (M)), and
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Table 6.2: Comparison of the complexity of DeNIM and the prior methods with their
post-processing tricks. ms: multi-scale weighting maps, eas: edge-aware smoothing.

Model Architecture Time (s) Param (M) FLOPS (G)
Mixed WB [2] + ms + eas 10.390

1.32 82.68
Mixed WB [2] + ms 0.228
Mixed WB [2] + eas 10.279
Mixed WB [2] 0.212
Style WB [24] + ms + eas 10.342

15.31 76.80
Style WB [24] + ms 0.232
Style WB [24] + eas 10.307
Style WB [24] 0.217
DeNIM + Mixed WB [2] 0.006 1.67 2.14
DeNIM + Style WB [24] 0.010 16.19 26.89

computational load measured in Floating Point Operations Per Second (i.e., FLOPS (G)).

In terms of processing time, DeNIM demonstrates a significant reduction in the time

required for WB correction. This improvement is achieved by eliminating post-processing

operations, such as multi-scale inference and edge-aware smoothing, and replacing the

decoder with simple learnable projection matrices. DeNIM exhibits a remarkable speed

advantage, being at least 35 times faster than earlier models and up to 1.700 times faster

when post-processing is considered.

The complexity of the model, measured by parameter count, shows a slight in-

crease in DeNIM compared to previous work, despite discarding the decoder in the base-

line models. This increase is attributed to the use of fully-connected layers as projection

matrices, instead of convolutional layers. Fully-connected layers inherently require more

parameters due to their dense connections between input and output neurons. Although

this design choice slightly increases the complexity of the model, it does not significantly

affect the processing time. Lastly, the computational load, represented by FLOPS, reflects

another key advantage of DeNIM. When trained with the Mixed WB backbone, DeNIM

achieves an approximately 97% reduction in FLOPS. Similarly, training with the Style

WB backbone reduces FLOPS by about 65%. These substantial reductions underscore

the exceptional efficiency of the proposed strategy compared to previous methods.
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6.2 Night Photography Rendering

The NTIRE 2023 Challenge on Night Photography Rendering [151] presents a

unique opportunity to address the complexities of nighttime image rendering, including

multi-illuminant scenarios and accumulated noise from consecutive processing steps. The

VGL OzU team, representing the application of Style WB within an ISP pipeline, develops

a comprehensive solution tailored to the requirements of the challenge.

The cornerstone of our approach is the integration of Style WB as a WB correc-

tion module. This method excels in handling mixed illuminants by modeling lighting

conditions as a style factor and reversing their effects to achieve white balance. As post-

processing, the images are processed using Restormer [156], a transformer-based model

optimized for efficient, high-resolution image restoration. Furthermore, an adaptive auto-

contrast strategy was employed, dynamically adjusting minimum cut-off values based on

histogram outliers to improve the quality of darker regions.

The ISP pipeline begins with essential preprocessing steps, including black-level

normalization and hot/bad pixel correction. For demosaicing, directional filtering (i.e.,

Menon’s algorithm) [61] replaces traditional CFA interpolation, which ensures high-quality

raw data processing. Preliminary illumination estimation is performed in the raw-RGB

domain using a random subsampling-based White Patch algorithm [157]. The trans-

formation from raw-RGB to sRGB space incorporates Color Component Transfer Func-

tion (CCTF) encoding, followed by wavelet-based denoising with adaptive noise thresh-

olding [158] to enhance image quality.

Once the data is in the sRGB domain, Style WB plays a pivotal role in mitigat-

ing the effects of different illuminants frequently observed in night scenes. To further

enhance natural color representation, a memory color enhancement algorithm neutralizes

specific colors such as sky and grass. The images were subsequently resized, oriented ac-

cording to the metadata specifications, and subjected to final denoising using Restormer.
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Figure 6.2: Overall pipeline of proposed ISP for night photography rendering challenge.

Table 6.3: People’s choice ranking results of night photography rendering challenge.

Rank Team Mean Score
1 IVLTeam 0.670
2 DH ImageAlgo 0.645
3 MiAlgo 0.626
4 BSSC 0.606
5 DH-AISP 0.583
6 Manual image enhancement 0.491
7 OzUVGL (ours) 0.453
8 The Majestic Mavericks 0.444
9 JMUCVLAB 0.439
10 NTU607 0.376
11 Baseline ISP 0.345

Due to Restormer’s computational complexity at high resolutions, the images were pro-

cessed in smaller grids to balance efficiency with quality. The pipeline is finished with

unsharp masking to enhance edge clarity and fine-tuned contrast and brightness adjust-

ments for optimal visual output. Figure 6.2 illustrates the proposed ISP pipeline for night

photography rendering in this challenge.

The competition results, presented in Table 6.3, highlight the robustness and ac-

curacy of our proposed pipeline. The integration of Style WB effectively tackles the chal-

lenges of multi-illuminant scenarios, while advanced denoising and contrast adjustment

strategies can deliver visually appealing, high-quality nighttime photographs. Although

the team did not secure top-tier rankings, the solution showcased significant potential for

practical applications in night photography rendering, which provides a solid foundation
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for further refinement and exploration in real-world scenarios.

As illustrated in Figure 6.3, the comparison between the methods highlights that

Mixed WB, while effective in simpler cases, struggles to resolve localized inconsistencies

in complex mixed lighting scenarios, whereas DeNIM with Style WB backbone achieves

superior results by balancing accurate white balancing with realistic rendering, which

produces visually coherent and natural outputs across all scenes tested. The comparison

reveals significant differences in their ability to handle mixed illuminant scenarios. Mixed

WB provides a straightforward approach to balancing color casts from multiple light

sources, which can effectively harmonize global illumination in simpler scenes. How-

ever, its limitations become apparent in complex scenarios, where it struggles to fully

mitigate residual tints and inconsistencies between localized lighting regions. For exam-

ple, in the scene with the snow-covered sculpture, Mixed WB addresses the competing

cold ambient light and warm artificial sources, but fails to achieve seamless integration,

leaving visible color mismatches disrupting the scene’s natural coherence.

In contrast, DeNIM with the Style WB backbone demonstrates a distinct advan-

tage, enabling it to preserve the natural vibrancy of scenes while effectively resolving

challenges that arise in mixed-illumination scenarios. In the snow-covered sculpture

scene, it not only balances competing light sources but also maintains the visual integrity

of the snow’s cold tones and the warm glow of the streetlights. Similarly, in the illumi-

nated building with decorative lights, this approach achieves an ideal balance by mitigat-

ing excessive yellow casts while retaining the vibrancy of the scene, which results in a

natural yet aesthetically pleasing outcome. These results underscore that DeNIM with

the Style WB backbone excels in addressing complex real-world scenarios by achieving

a nuanced equilibrium between technical accuracy and stylistic coherence, solidifying its

position as the most robust method among the evaluated approaches.
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Figure 6.3: Comparison of the night photography rendering results of our WB correction
strategies with Mixed WB [2] on the selected samples from Night Photography Rendering
Challenge 23’ evaluation set. Image indices: 8678, 8210, 8817, 8894, 8941.
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7. CONCLUSIONS

This dissertation presents a comprehensive exploration of WB correction by mod-

eling lighting conditions as a style factor. Through the development of exact matching

of the feature distribution (i.e., EFDM) as a novel loss function and its integration into

state-of-the-art deep learning architectures, this research addresses key challenges in han-

dling complex illumination scenarios. The approaches proposed in this study demonstrate

significant advancements over traditional approaches, as it improves spatial consistency,

perceptual accuracy, and robustness in multi-illuminant scenarios, thereby accomplishing

the research objectives.

This research introduces EFDM as an innovative optimization strategy that en-

ables the exact matching of higher-order feature statistics through the [CLS] token rep-

resentation for WB correction. This compact yet powerful approach improves the global

contextual understanding of lighting conditions, which results in superior performance in

WB correction. The integration of EFDM with architectures such as Uformer and UNet

validates its adaptability, which produces consistent improvements across single-, mixed-

and multi-illuminant scenarios. The single-to-multi ratio (MSR) metric, introduced in this

study, provides additional insights into robustness under varying illumination conditions,

highlighting the practical relevance of the proposed methods.

Although feature distribution matching-based approaches prove highly effective,

their implementation within the scope of this study is limited to Uformer and UNet ar-

chitectures. This limitation presents an opportunity to explore their integration with more

complex and advanced architectures, potentially further enhancing performance. Further-

more, the integration of DeNIM-based mechanisms into FDM WB remains unexplored.

Incorporating the deterministic pixel mapping technique of DeNIM for illumination map-

ping within the FDM WB could enhance its ability to handle fine-grained illumination

variations and adapt to device-specific constraints while maintaining the adaptability and
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precision of WB correction. Moreover, while EFDM demonstrates notable generaliza-

tion and scalability under various illumination conditions, future studies could extend its

application to real-world datasets with even more challenging and diverse lighting sce-

narios. Such efforts would ensure that these methods remain robust and generalizable in

uncontrolled environments.

Future research aims to extend the findings of this work by exploring diffusion

models as a means to model complex data distributions for WB correction. Flow match-

ing and neural ordinary differential equations (ODEs) also emerge as promising frame-

works for distribution-based optimization, which can potentially enhance the scalability

and precision of EFDM in high-dimensional feature spaces. Expanding evaluations to

real-world datasets and integrating the proposed methods into practical imaging systems

further solidifies their applicability, particularly for mobile photography and professional

imaging tools.

In conclusion, this dissertation offers a significant contribution to WB correction

by advancing the understanding and application of distribution-based modules and opti-

mization strategies. The proposed methods provide a robust foundation for addressing

complex illumination dynamics, paving the way for further innovation in image restora-

tion and enhancement under diverse lighting conditions.
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B.Sc. in Computer Science in Engineering @ Özyeğin University (2012 – 2018)
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