Clothing Image Retrieval with Triplet Capsule Networks

Osman Furkan Kınlı

Advisor: Asst. Prof. M. Furkan Kıraç

Department of Computer Science Özyeğin University

İstanbul, August 19th, 2019

Outline

- Introduction
- Clothing Image Retrieval
- Triplet-based Similarity Learning
- Capsule Networks
- Proposed Architectures
- Experimental Study
- Results
- Conclusion

- Online shopping is a highly **growing** market.
- Global fashion e-commerce market has a volume of **480B \$**¹.
- Using visual information of the products is one of the most sophisticated way to adapt developing technologies to the sales process.

¹According to Fashion E-Commerce Report 2019 by Statista

- With the help of novel techniques combining **CV** and **DNNs**, it has become easier to achieve.
- Mostly attacked to this problem by using **CNN-based architectures**.
- However, CNNs have **some intrinsic limitations** by their nature.
- Most recently proposed architecture, Capsule Networks, claims to overcome these limitations.

• In this thesis, we investigate the performance of

Capsule Network architecture

on **clothing image retrieval** task.

- Main goal:
- Investigating **the SOTA research** on clothing retrieval and Capsule Networks
 - The design of **Triplet-based** version of Capsule Networks
 - More **powerful feature extraction recipe** for Capsule inputs.

• Task of retrieving a clothing image in a gallery by querying an image of the same clothes.

- In fashion domain:
 - Kiapour *et al.* (2015): learning the similarity between the images is the best way to solve cross-domain image matching.
 - Huang *et al.* (2015): creating domain-specific representations by two sub-networks that are structurally similar, yet the weights are not shared is another solution for cross-domain image matching.
 - Liu *et al.* (2016): Employing the landmark information besides to the images helps to recover pose information in the images.

- In fashion domain:
 - Corbière *et al.* (2017): Integrating textual visual information (*i.e.* bag-of-words descriptors) into weakly-supervised learning process leads to get promising results.
 - Wang *et al.* (2017): Attention-based design focuses on important regions in clothing images and diminishes the effect of the background clutter.
 - Yuan *et al.* (2017): Ensembling a set of models with different complexities in cascaded manner and applying hard sampling strategies at the same time improves the performance by a wide margin.

- In fashion domain:
 - Opitz *et al.* (2018): Exploiting the independence within ensembles improves the robustness of the feature embeddings to the sampling strategy
 - Ge *et al.* (2018): Hierarchical Triplet Loss (HTL) addresses the random sampling issue during training Triplets
 - Kim *et al.* (2018): Representing different parts of the objects on the feature embeddings with different attention masks encourages the diversity in feature representation.

• Our approach:

Employing Capsule Networks to this problem

without utilizing any side information or extra module that

recovers the pose configuration in the images.

- Inspired by Siamese Networks.
- 3 instances of pairs for the same feed-forward Neural Network and denoted as:

x: Anchor instance; x^+ : Positive instance; x^- : Negative instance

• <u>Sharing the weights throughout the network.</u>

- Inspired by Siamese Networks.
- 3 instances of pairs for the same feed-forward Neural Network and denoted as:

x: Anchor instance; x^+ : Positive instance; x^- : Negative instance

• <u>Sharing the weights throughout the network.</u>

where $f(x) \in \mathbf{R}^d$, $d(l_1, l_2)$, $L(d_1, d_2) \in \mathbf{R}^d$

Feature embeddings:

$$f(x) = l$$
$$f(x^+) = l^+$$
$$f(x^-) = l^-$$

Osman Furkan Kınlı, Thesis Defense

where $f(x) \in \mathbf{R}^d$, $d(l_1, l_2), L(d_1, d_2) \in \mathbf{R}^d$

Distance metric:

$$d(l, l^{+}) = \|f(x) - f(x^{+})\|_{2}^{2}$$
$$d(l, l^{-}) = \|f(x) - f(x^{-})\|_{2}^{2}$$

where $f(x) \in \mathbb{R}^{d}$, $d(l_{1}, l_{2}), L(d_{1}, d_{2}) \in \mathbb{R}^{d}$ Triplet relationship:

 $d(l, l^+) + \alpha < d(l, l^-)$

where $f(x) \in \mathbf{R}^d$, $d(l_1, l_2), L(d_1, d_2) \in \mathbf{R}^d$

Triplet loss:

$$L(d_1, d_2) = \sum_{i} [d(l_i, l_i^+) - d(l_i, l_i^-) + \alpha]$$

• Capsule Networks are recently proposed by Sabour and Hinton *et al.* (2017), with a novel routing algorithm between Capsules.

• Capsules are basically groups of neurons.

• High dimensional information:

the existence and pose configuration.

• The output of a Capsule is routed to the next Capsule layer by

a dynamic routing algorithm.

• In graphics:

Triangle		Rectangle			
Parameters	Values	Parameters	Values		
х	50	х	60		
у	80	у	120	rendering	
height	200	height	350		
width	120	width	220		
color	yellow	color	blue		
angle	30	angle	30		

Osman Furkan Kınlı, Thesis Defense

• In inverse graphics:

Triangle Re		Rectan	gle			
Parameters	Values		Parameters	Values		
х	50		Х	60		
у	80		у	120	Inverse rendering	
height	200		height	350	•	
width	120		width	220		
color	yellow		color	blue		
angle	30		angle	30		

Osman Furkan Kınlı, Thesis Defense

Osman Furkan Kınlı, Thesis Defense

Osman Furkan Kınlı, Thesis Defense

- In mathematical perspective:
 - The output of capsule $i: u_i$
 - Trainable transformation matrix : W_{ij}
 - Transformed output by coordinate frame relation

$$\hat{u}_{j|i} = W_{ij}u_i$$

- In mathematical perspective:
 - Initial logits : b_{ij} (*i.e.* initialized to 0)
 - Represents the log prior probability of routing the output of capsule *i* to capsule *j* in the next layer.
 - Routing softmax

$$c_{ij} = \frac{e^{b_{ij}}}{\sum e^{b_{ij}}}$$

- In mathematical perspective:
 - Non-activated input for capsule *j*

$$s_j = \sum_i c_{ij} \hat{u}_{j|i}$$

• Activation of the input for capsule *j* (*i.e.* squashing)

$$v_j = \frac{\|s_j\|^2}{1 + \|s_j\|^2} \frac{s_j}{\|s_j\| + \epsilon}$$

- In mathematical perspective:
 - Agreement between coordinate frames (*i.e.* dot product of transformed output of capsule *i* and activated input of capsule *j*)

$$a_{ij} = v_j \hat{u}_{j|i}$$

Osman Furkan Kınlı, Thesis Defense

• Objective function:

 $L_k = T_k max(0, m^+ - ||v_k||)^2 + \lambda(1 - T_k)max(0, ||v_k|| - m^-)^2$

- Capsule Networks can **perform well** by
 - flowing **more descriptive** information between layers
 - preserving **the part-whole relationship** of the objects
- and regardless to
 - the amount of data
 - the diversity of data

- We have **3** design steps:
 - **Powerful feature extraction blocks** for Capsule inputs
 - Adjusting the original architecture to Triplet-based design
 - Designing Capsule layers

- Feature extraction blocks:
 - In default methodology, the feature extraction block has a **single** convolutional layer with **64** filters.
 - We design **two** different feature extraction blocks to generate Capsule inputs.

- **1. Stacking** several convolutional layers
 - with different number of filters
 - followed by leaky-formed rectifiers and batch normalization

2. Connecting stacked-convolutional layers as **residuals**

- Triplet-based design:
 - Learning **the similarity** between images
 - Feeding the objective function with the embedded sparse representations extracted by Capsules

- Capsule layers:
 - Two fully-connected Capsule layers which are called *Primary Capsule* and *Class Capsule*, respectively.

• Baseline study:

- Data set:
 - **In-shop** partition of DeepFashion
 - 25k training, 14k query and 12k gallery images

Original

Landmarks

Human Joints

Poselets

Clothing Image Retrieval with Triplet Capsule Networks

• Data set:

• 1000 Attributes

Groups	Attributes
Texture	Floral, Stripe, Paisley, Distressed, Dot, Plaid, Panel, Raglan,
Fabric	Lace, Denim, Chiffon, Pleated, Woven, Leather, Cotton, Linen,
Shape	Crop, Maxi, Fit, Longline, Boxy, Mini, Skinny, Midi, Pencil,
Part	Sleeveless, Pocket, V-Neck, Hooded, Racerback, Peplum, Strappy,
Style	Graphic, Muscle, Tribal, Peasant, Surplice, Polka, Retro, Yoga,

• At most 8 visible Landmarks

• Implementation details:

- 2 MSI GTX 1080 Ti Armor OC 11 GB
- Framework: Keras with TF backend¹
- Hyper-parameter settings:

Hyper-parameter	Value
Optimizer	Adam [53]
Learning Rate	0.001
Decay Rate	5×10^{-4}
Batch Size	32
Routings	3
Normalization	Pixel-wise

¹Source code: <u>https://github.com/birdortyedi/image-retrieval-with-capsules</u>

• Data augmentation:

Augmentation Methods	Applied	Range
Feature-wise Centering	×	None
Sample-wise Centering	×	None
Feature-wise STD Norm.	×	None
Sample-wise STD Norm.	×	None
ZCA Whitening	×	None
Rotation	~	[0°-30°]
Width Shifting	~	[0-0.1]
Height Shifting	✓	[0-0.1]
Channel Shifting	×	None
Brightness	~	[0.5 - 1.5]
Shearing	~	[0-0.1]
Zoom	1	[0-0.1]
Horizontal Flipping	√	None
Vertical Flipping	×	None

Osman Furkan Kınlı, Thesis Defense

• Qualitative Results:

Osman Furkan Kınlı, Thesis Defense

• Qualitative Results:

Osman Furkan Kınlı, Thesis Defense

• Quantitative Results:

• **Details** of architectures in the comparison:

Model Name	Backbone Architecture	Side Information (SI) Extra Module (EM)	# of (M) Params
WTBI [25]	AlexNet [54]	Category-specific Similarity (SI)	60
DARN [26]	Custom NiN [55]	Visual Similarity (SI)	105
FashionNet [1]	VGG-16 [39]	Landmark Information (SI)	134
Corbiére et al. [27]	ResNet50 [6]	Bag-of-words Descriptors (EM)	25
SCCapsNet (ours)	CapsNet [4]	No SI/EM Used	2.5
RCCapsNet (ours)	CapsNet [4]	No SI/EM Used	4.5
HDC [29]	GoogLeNet [40]	Hard-Aware Cascaded Embedding (EM)	5
VAM [28]	GoogLeNet [40]	Attention with Impdrop Connection (EM)	6
BIER [20]	GoogLeNet [40]	Embedding Boosting (EM)	5
HTL [19]	GoogLeNet [40]	Hierarchical Triplet Loss (EM)	5
A-BIER [20]	GoogLeNet [40]	Embedding Boosting with Adversarial Loss (EM)	5
ABE [21]	GoogLeNet [40]	Attention-based Ensembling (EM)	10

Osman Furkan Kınlı, Thesis Defense

- Quantitative Results:
 - Inner comparison:

Models	Top-1	Top-10	Top-20	Top-30	Top-40	Top-50
	(%)	(%)	(%)	(%)	(%)	(%)
SCCapsNet (ours)	32.1	72.4	81.8	86.3	89.2	90.9
RCCapsNet (ours)	33.9	75.2	84.6	88.6	91.0	92.6

- Quantitative Results:
 - Comparison with **the Baseline study**:

Models	Top-1	Top-10	Top-20	Top-30	Top-40	Top-50
	(%)	(%)	(%)	(%)	(%)	(%)
FashionNet+100A+L	36.0	53.0	57.3	60.0	62.0	62.5
FashionNet+500A+L	37.0	59.0	64.6	67.5	69.0	69.5
FashionNet+1000A+J	41.0	64.0	68.0	71.0	73.0	73.5
FashionNet+1000A+P	42.0	65.0	70.0	72.0	72.5	75.0
FashionNet+1000A+L	53.2	72.5	76.4	77.0	79.0	80.0
SCCapsNet (ours)	32.1	72.4	81.8	86.3	89.2	90.9
RCCapsNet (ours)	33.9	75.2	84.6	88.6	91.0	92.6

- Quantitative Results:
 - Comparison with **the SOTA**:

Models	Top-1	Top-10	Top-20	Top-30	Top-40	Top-50	
	(%)	(%)	(%)	(%)	(%)	(%)	
WTBI [25]	35.0	47.0	50.6	51.5	53.0	54.5	
DARN [26]	38.0	56.0	67.5	70.0	72.0	72.5	
FashionNet [1]	53.2	72.5	76.4	77.0	79.0	80.0	
Corbiére et al. [27]	39.0	71.8	78.1	81.6	83.8	85.6	
SCCapsNet (ours)	32.1	72.4	81.8	86.3	89.2	90.9	
RCCapsNet (ours)	33.9	75.2	84.6	88.6	91.0	92.6	
HDC [29]	62.1	84.9	89.0	91.2	92.3	93.1	
VAM [28]	66.6	88.7	92.3	-	-	-	
BIER [20]	76.9	92.8	95.2	96.2	96.7	97.1	
HTL [19]	80.9	94.3	95.8	97.2	97.4	97.8	
A-BIER [20]	83.1	95.1	96.9	97.5	97.8	98.0	
ABE [21]	87.3	96.7	97.9	98.2	98.5	98.7	

- Quantitative Results:
 - Comparison with **the SOTA**:

Models	Top-1	Top-10	Top-20	Top-30	Top-40	Top-50
	(%)	(%)	(%)	(%)	(%)	(%)
WTBI [25]	35.0	47.0	50.6	51.5	53.0	54.5
DARN [26]	38.0	56.0	67.5	70.0	72.0	72.5
FashionNet [1]	53.2	72.5	76.4	77.0	79.0	80.0
Corbiére et al. [27]	39.0	71.8	78.1	81.6	83.8	85.6
SCCapsNet (ours)	32.1	72.4	81.8	86.3	89.2	90.9
RCCapsNet (ours)	33.9	75.2	84.6	88.6	91.0	92.6
HDC [29]	62.1	84.9	89.0	91.2	92.3	93.1
VAM [28]	66.6	88.7	92.3	-	-	-
BIER [20]	76.9	92.8	95.2	96.2	96.7	97.1
HTL [19]	80.9	94.3	95.8	97.2	97.4	97.8
A-BIER [20]	83.1	95.1	96.9	97.5	97.8	98.0
ABE [21]	87.3	96.7	97.9	98.2	98.5	98.7

Category Name	Number of	Number of
	Unique Items	Total Items
Blouse/Shirts	697	2.094
Tees/Tanks	673	2.955
Dresses	624	1.091
Shorts	246	988
Sweaters	212	735
Jackets/Coats	195	545

- Ablation study 1:
 - **Category-specific** comparison:

Models	Category	Top-1	Top-10	Top-20	Top-30	Top-40	Top-50
		(%)	(%)	(%)	(%)	(%)	(%)
	Blouse/Shirts	36.3	74.8	82.5	86.4	88.6	90.6
	Tees/Tanks	20.0	64.1	75.9	82.7	86.3	88.5
SCCapeNet	Dresses	24.8	65.4	75.4	81.8	85.9	88.0
SCCapsiver	Shorts	25.4	66.1	78.5	83.8	88.3	90.5
	Sweaters	27.5	69.3	80.4	84.2	86.5	88.6
	Jackets/Coats	34.5	75.2	84.2	87.7	89.7	92.3
	Blouse/Shirts	39.7	79.5	86.8	89.5	91.3	92.9
	Tees/Tanks	35.1	75.5	83.3	86.8	89.0	90.8
PCCopeNet.	Dresses	31.9	73.3	84.9	89.0	91.2	92.4
ReCapsiver	Shorts	27.3	69.2	80.4	86.6	89.7	92.5
	Sweaters	27.6	69.8	80.8	85.0	88.3	89.8
	Jackets/Coats	36.5	75.2	84.8	90.5	92.8	94.5

Osman Furkan Kınlı, Thesis Defense

- Ablation study 2:
 - Category classification comparison:
 - with **the Baseline study**:

Models + the required	Top-3	Top-5
side information (if any)	(%)	(%)
FashionNet + 100 A + L	47.38	70.57
FashionNet $+$ 500 A $+$ L	57.44	77.39
FashionNet + 1000 A + J	72.30	81.52
FashionNet + 1000 A + P	75.34	84.87
FashionNet + 1000 A + L	82.58	90.17
SCCapsNet-CLS (ours)	83.18	89.83
RCCapsNet-CLS (ours)	85.12	91.41

- Ablation study 2:
 - Category classification comparison:
 - with the **SOTA**:

		Ω^{*}_{1}] = I_{1} ℓ_{1} = ℓ_{1} (OT)	T 0	
Architectures	Backbone	Extra Module (EM)	(%)	(%)
WTBI [25]	AlexNet [54]	Category-specific Similarity (SI)	43.73	66.26
DARN [26]	Custom NiN [55]	Visual Similarity (SI)	59.48	79.58
FashionNet [1]	VGG-16 [39]	Landmark Information (SI)	82.58	90.17
$\begin{array}{c} \text{SCCapsNet-CLS} \\ (ours) \end{array}$	CapsNet [4]	No SI / EM Used	83.18	89.83
$\begin{array}{c} \text{RCCapsNet-CLS} \\ (ours) \end{array}$	CapsNet [4]	No SI / EM Used	85.12	91.41
Corbiére et al. [27]	ResNet50 [6]	Bag-of-words Descriptors (EM)	86.30	92.80
Lu et al. [57]	VGG-16 [39]	Dynamic Branching (EM)	86.72	92.51
Wang et al. [58]	VGG-16 [39]	Two Attention Modules (EM)	90.99	95.78
Liu et al. [59]	VGG-16 [39]	Single Attention Module (EM)	91.16	96.12

Conclusion

• To the best of our knowledge, nobody attacks to

- Any information retrieval task
- Any fashion-related task
- Any task using ImageNet-sized data set
- Any task using a data set with 6-digit number of samples

by using Capsule Networks so far.

Conclusion

- In this thesis, we show that
 - Capsule Networks can be designed as **Triplet-based** to learn the similarity between the images.
 - Employing **more powerful feature extraction methods** for Capsule inputs improves the performance of Capsules significantly.

Conclusion

- In this thesis, we also show that
 - Capsule Networks **can achieve even better results** than CNN-based architectures that use different side information or extra module **to recover pose configuration** of the objects.
 - Capsule Networks can get comparable results to the SOTA architectures by using **only images** and with **only half of the parameters** in the SOTA architectures.

References

[1] Z. Liu, P. Luo, S. Qiu, X. Wang, and X. Tang, "DeepFashion: Powering robust clothes recognition and retrieval with rich annotations," in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.

[4] S. Sabour, N. Frosst, and G. E. Hinton, "Dynamic routing between capsules," in Advances in Neural Information Processing Systems 30, pp. 3856–3866, 2017.

[5] A. G'eron, "Capsule Networks (CapsNets): Tutorial," 2017.

[6] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2015.

[13] F. Schroff, D. Kalenichenko, and J. Philbin, "FaceNet: A unified embedding for face recognition and clustering," CoRR, vol. abs/1503.03832, 2015.

[19] W. Ge, "Deep metric learning with hierarchical triplet loss," in The European Conference on Computer Vision (ECCV), September 2018.

[20] M. Opitz, G. Waltner, H. Possegger, and H. Bischof, "BIER : Boosting independent embeddings robustly," 2017 IEEE International Conference on Computer Vision (ICCV), pp. 5199–5208, 2017.

[21] W. Kim, B. Goyal, K. Chawla, J. Lee, and K. Kwon, "Attention-based ensemble for deep metric learning," in The European Conference on Computer Vision (ECCV), September 2018.

[22] G. Koch, R. Zemel, and R. Salakhutdinov, "Siamese neural networks for one-shot image recognition," in International Conference on Machine Learning (ICML) Deep Learning Workshop, vol. 2, 2015.

[25] M. Hadi Kiapour, X. Han, S. Lazebnik, A. C. Berg, and T. L. Berg, "Where to Buy It: Matching street clothing photos in online shops," pp. 3343–3351, 12 2015.

[26] J. Huang, R. Feris, Q. Chen, and S. Yan, "Cross-Domain Image Retrieval with a Dual Attribute-aware Ranking Network," in Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1062–1070, 2015. 72

[27] C. Corbi`ere, H. Ben-younes, A. Ram´e, and C. Ollion, "Leveraging weakly annotated data for fashion image retrieval and label prediction," 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 2268–2274, 2017.

[28] Z. Wang, Y. Gu, Y. Zhang, J. Zhou, and X. Gu, "Clothing retrieval with visual attention model," 2017 IEEE Visual Communications and Image Processing (VCIP), pp. 1–4, 2017.

[29] Y. Yuan, K. Yang, and C. Zhang, "Hard-aware deeply cascaded embedding," in 2017 IEEE International Conference on Computer Vision (ICCV), pp. 814–823, Oct 2017.

Osman Furkan Kınlı, Thesis Defense

References

[30] G. E. Hinton, A. Krizhevsky, and S. D. Wang, "Transforming Auto-encoders," in Proceedings of the 21th International Conference on Artificial Neural Networks - Volume Part I, ICANN'11, (Berlin, Heidelberg), pp. 44–51, Springer-Verlag, 2011.

[33] G. Hinton, S. Sabour, and N. Frosst, "Matrix capsules with EM routing," in Proceedings of International Conference on Learning Representation (ICLR), 2018.

[36] D. Rawlinson, A. Ahmed, and G. Kowadlo, "Sparse unsupervised capsules generalize better," in arXiv preprint arXiv:1804.04241, 04 2018.

[39] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," in International Conference on Learning Representations (ICLR), 2015.

[40] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, "Going deeper with convolutions," in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015

[53] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," in 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[55] M. Lin, Q. Chen, and S. Yan, "Network in network," in 2rd International Conference on Learning Representations (ICLR) 2014, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2014.

[56] A. R. Kosiorek, S. Sabour, Y. W. Teh, and G. E. Hinton, "Stacked capsule autoencoders," in arXiv preprint arXiv:1906.06818, 06 2019.

[57] Y. Lu, A. Kumar, S. Zhai, Y. Cheng, T. Javidi, and R. Feris, "Fully-adaptive feature sharing in multi-task networks with applications in person attribute classification," 2016.

[58] W. Wang, Y. Xu, J. Shen, and S.-C. Zhu, "Attentive fashion grammar network for fashion landmark detection and clothing category classification," in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

[59] J. Liu and H. lu, "Deep fashion analysis with feature map upsampling and landmark-driven attention," 09 2018.

Thank you!

Osman Furkan Kınlı, Thesis Defense