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Introduction

* Online shopping is a highly growing market.
* Global fashion e-commerce market has a volume of 480B $'.

* Using visual information of the products is one of the most
sophisticated way to adapt developing technologies to the sales
process.

!According to Fashion E-Commerce Report 2019 by Statista
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Introduction

« With the help of novel techniques combining CV and DNN:s, it has
become easier to achieve.

* Mostly attacked to this problem by using CNN-based architectures.
« However, CNNs have some intrinsic limitations by their nature.

* Most recently proposed architecture, Capsule Networks, claims to
overcome these limitations.
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Introduction

* In this thesis, we investigate the performance of
Capsule Network architecture

on clothing image retrieval task.
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Introduction
* Main goal:

* Investigating the SOTA research on clothing retrieval and
Capsule Networks

* The design of Triplet-based version of Capsule Networks
« More powerful feature extraction recipe for Capsule inputs.
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Clothing Image Retrieval

» Task of retrieving a clothing image in a gallery by querying an
image of the same clothes.

Querying to Retrieving the
a database same product

[ »

Osman Furkan Kinli, Thesis Defense Clothing Image Retrieval with Triplet Capsule Networks



Clothing Image Retrieval

e In fashion domain:

* Kiapour et al. (2015): learning the similarity between the images is the best way to
solve cross-domain image matching.

* Huang et al. (2015): creating domain-specific representations by two sub-networks
that are structurally similar, yet the weights are not shared is another solution for
cross-domain image matching.

* Liu et al. (2016): Employing the landmark information besides to the images helps to
recover pose information in the images.
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Clothing Image Retrieval

e In fashion domain:

 Corbiere et al. (2017): Integrating textual visual information (i.e. bag-of-words
descriptors) into weakly-supervised learning process leads to get promising results.

« Wang et al. (2017): Attention-based design focuses on important regions in clothing
images and diminishes the effect of the background clutter.

* Yuan et al. (2017): Ensembling a set of models with different complexities in cascaded
manner and applying hard sampling strategies at the same time improves the
performance by a wide margin.
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Clothing Image Retrieval

e In fashion domain:

 Opitz et al. (2018): Exploiting the independence within ensembles improves the
robustness of the feature embeddings to the sampling strategy

* Ge et al. (2018): Hierarchical Triplet Loss (HTL) addresses the random sampling issue
during training Triplets

« Kim et al. (2018): Representing different parts of the objects on the feature
embeddings with different attention masks encourages the diversity in feature
representation.
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Clothing Image Retrieval

* Our approach:
Employing Capsule Networks to this problem
without utilizing any side information or extra module that

recovers the pose configuration in the images.
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Triplet-based Similarity Learning

* Inspired by Siamese Networks.

+ 3 instances of pairs for the same feed-forward Neural Network and denoted as:

x: Anchor instance; x*: Positive instance; x: Negative instance

« Sharing the weights throughout the network.

4 N\
NETWORK
q y, Distance
Sharing the weights measure
4 N\
NETWORK { —»[ Objective J
unction
. J
Sharing the weights ., Distance
( ) measure
NETWORK
. J
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Triplet-based Similarity Learning

where f(z) € RY,
d([l,lg) , L(dl,dg) e R

Feature embeddings:
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Triplet-based Similarity Learning

where f(z) € R?,
d([l,lg), L(dl,dg) e R

Distance metric:

d(l,17) = || f(z) = fa")Il>
d(l,17) = lf (=) = fa)]3
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Triplet-based Similarity Learning

where f(z) € R?,
d(ly,1s) , L(dy,d3) € R T . B

Triplet relationship: o

d(l, I +a < d(l,17) N
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Triplet-based Similarity Learning

where f(z) € R?,
d([l,lg), L(dl,dg) e R

Triplet loss:

1
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Capsule Networks

» Capsule Networks are recently proposed by Sabour and Hinton
et al. (2017), with a novel routing algorithm between Capsules.
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Capsule Networks

* Capsules are basically groups of neurons.

« High dimensional information:

a
A

A 4

the existence and pose configuration.

* The output of a Capsule is routed to the next Capsule layer by

a dynamic routing algorithm.
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Capsule Networks

* In graphics:

X 50 X 60
. 30 . 120 rendering
height 200 height 350 ’
width 120 width 220
color yellow color blue
angle 30 angle 30
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Capsule Networks

* In inverse graphics:

X 50 X 60

y 30 y 120 Inverse rendering
height 200 height 350

width 120 width 220

color yellow color blue

angle 30 angle 30
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Capsule Networks

Input Capsules Output

N
\<~ \

N -
v,

Part 1: Part 2: ~ Class 1: ~ Class 2: -
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Capsule Networks

Input Capsules Output
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Capsule Networks

* In mathematical perspective:

* The output of capsulei: u;
» Trainable transformation matrix : W/; j

 Transformed output by coordinate frame relation

’U/j|@' — quz
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Capsule Networks

* In mathematical perspective:

* Initial logits : b;; (i.e. initialized to 0)
* Represents the log prior probability of routing the output of capsule i
to capsule j in the next layer.

 Routing softmax

G
— S ebis

Cg'j
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Capsule Networks

* In mathematical perspective:

« Non-activated input for capsule j
Sj = E Cijlj
i

* Activation of the input for capsule j (i.e. squashing)

sl s
1+ |52 ||s;]| + €

’Uj
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Capsule Networks

* In mathematical perspective:

« Agreement between coordinate frames (i.e. dot product of transformed
output of capsule i and activated input of capsule 7)

Ajj = UjUjl;
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Capsule Networks

Input Capsules Output
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Capsule Networks

* Objective function:

Ly, = Tymaz(0,m™* — H’UkH)Q + A1 — Tx)max(0, ||vg|| — m_)2
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Capsule Networks

* Capsule Networks can perform well by

- flowing more descriptive information between layers
» preserving the part-whole relationship of the objects

» and regardless to

e the amount of data
* the diversity of data
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Proposed Architectures

* We have 3 design steps:

« Powerful feature extraction blocks for Capsule inputs
* Adjusting the original architecture to Triplet-based design
* Designing Capsule layers
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Proposed Architectures

» Feature extraction blocks:

* In default methodology, the feature extraction block has a single
convolutional layer with 64 filters.

* We design two different feature extraction blocks to generate Capsule
inputs.
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Proposed Architectures

1. Stacking several convolutional layers

- with different number of filters
- followed by leaky-formed rectifiers and batch normalization
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Proposed Architectures

2. Connecting stacked-convolutional layers as residuals

— ™ — —
B B
A A
C T L C T L
Lol lel 15| Lol lel [£] [Fo+x]
— =| H | c =P - H | >
N N L N N L
vV | 3] Y \Y o [
M M
S — - \ —

Osman Furkan Kinli, Thesis Defense Clothing Image Retrieval with Triplet Capsule Networks



Proposed Architectures

» Triplet-based design:

* Learning the similarity
between images

 Feeding the objective function
with the embedded sparse
representations extracted by
Capsules
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Proposed Architectures
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Experimental Study

» Baseline study:
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Experimental Study

* Data set:
* In-shop partition of DeepFashion
» 25k training, 14k query and 12k gallery images

Original Landmarks Human Joints Poselets
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Experimental Study

e Data set:
« 1000 Attributes | Groups |

Attributes

Texture | Floral, Stripe, Paisley, Distressed. Dot, Plaid. Panel, Raglan, ...
Fabric | Lace, Denim, Chiffon, Pleated, Woven, Leather, Cotton, Linen, ...
Shape | Crop, Maxi, Fit, Longline, Boxy, Mini, Skinny, Midi, Pencil, ...
Part Sleeveless, Pocket, V-Neck, Hooded, Racerback, Peplum, Strappy, ...
Style Graphic, Muscle, Tribal, Peasant, Surplice, Polka, Retro, Yoga, ...

At most 8 visible Landmarks
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Experimental Study

* Implementation details:
« 2MSI GTX 1080 Ti Armor OC 11 GB  Data augmentation:

¢ FrameWOI‘k: Kel‘aS Wlth TF baCkendl | Augmentation Methods | Applied | Range |
Feature-wise Centering X None
. Sample-wise Centering X None
- Hyper-parameter settings: Feature-wise STD Norm. X None
Sample-wise STD Norm. X None
ZCA Whitening X None
H}FPEP-ParﬂHIEtEP Vﬂluﬂ [‘()ti\ri()ll / [()0-3()0]
Optimizer Adam |53 Width Shifting v 10-0.1]
Learning Rate 0.001 Height Shitting v 10-0.1]
= 1 Channel Shifting X None
Decay Rate o x 10 Brightness v 10.5-1.5]
Batch Size 32 Shearing v 10-0.1]
Routings 3 Zoom v 0-0.1]
Normalization Pirel-wise Horizontal Mlipping Y None
Vertical Flipping X None

1Source code: https:/ / github.com/birdortyedi/image-retrieval-with-capsules
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Results

e Qualitative Results:

I

f
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Results

e Qualitative Results:
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Results

* Quantitative Results:
* Details of architectures in the comparison:

Model Backbone Side Information (SI) # of (M)
Name Architecture Extra Module (EM) Params
WTBI [25] AlexNet [54] Category-specific Similarity (SI) 60
DARN [26] Custom NiN [55] Visual Similarity (SI) 105
FashionNet [1] VGG-16 [39] Landmark Information (SI) 134
Corbiére et al. [27] ResNet50 (6] Bag-of-words Descriptors (EM) 25
SCCapsNet (ours) CapsNet [4] No SI/EM Used 2.5
RCCapsNet (ours) CapsNet [4 No SI/EM Used 4.5
HDC [29] GoogLeNet [40] Hard-Aware Cascaded 5
Embedding (EM)
VAM (28] GoogLeNet [40)] Attention with Impdrop 6
Connection (EM)
BIER [20] GoogLeNet (40 Embedding Boosting (EM) 5
HTL [19] GoogLeNet [40| | Hierarchical Triplet Loss (EM) 5
A-BIER (20 GoogLeNet |40 Embedding Boosting with 5
Adversarial Loss (EM)
ABE [21] GoogLeNet [40) Attention-based 10

Ensembling (EM)
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Results

* Quantitative Results:
* Inner comparison:

Models Top-1 | Top-10 | Top-20 | Top-30 | Top-40 | Top-50
(Vo) (%) (%) (%) (o) (o)
SCCapsNet (ours) 32.1 72.4 818 86.3 89.2 90.9
RCCapsNet [(ours) 33.9 79.2 84.6 8E.6 91.0 92.6
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Results

* Quantitative Results:
« Comparison with the Baseline study:

Models Top-1 | Top-10 | Top-20 | Top-30 | Top-40 | Top-50

(o) (%) (%) (%) (%) (%)

FashionNet+100A+L 36.0 3:3.0) ST 60.0 62.0 62.5
FashionNet+500A+L 37.0 2.0 64.6 67.5 69.0 69.5
FashionNet+1000A+.J | 41.0 64.0 68.0 71.0 73.0 73.5
FashionNet+1000A+P 42.0 65.0 70.0 72.0 72.9 9.0
FashionNet+1000A+L | 53.2 12.9 76.4 77.0 79.0 S0.0
SCCapsNet {ours) 32.1 72.4 21.8 86.3 89.2 90.9
RCCapsNet [ours) 33.9 75.2 84.6 88.6 91.0 92.6
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Results

* Quantitative Results:
« Comparison with the SOTA:

Models

WTBI [25]

Top-1
(%)

Top-10
(%)

Top-20
(%)

Top-30
(%)

Top-40
(%)

Top-50
(%)

DARN [26]

FashionNet [1]

-

Corbiére et al.

SCCapsNet (ours) | 32.1 724 81.8 86.3 89.2 90.9
RCCapsNet (ours) | 33.9 75.2 84.6 88.6 91.0 92.6
HDC |29 62.1 84.9 89.0) 9]1.2 92.3 093.1
VAM |28 66.6 B8 7 02.3 - - -
BIER |20 76.9 92.8 95.2 96.2 96.7 97.1
HTL [19] (0.9 94.3 95.8 97.2 O97.4 O7.8
A-BIER [20] 83.1 05.1 96.9 97.5 Q7.8 0%.0
ABE [21] 87.3 096.7 97.9 08.2 08.5 O08.7
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Results

* Quantitative Results:
« Comparison with the SOTA:

Models Top-1 | Top-10 | Top-20 | Top-30 | Top-40 | Top-50
(%) (%) (%) (%) (%) (%)
WTRBI [25 35.0 47.0 2.6 91.5 53.0 4.5
DARN [26 35.0 26.0) 67.5 70.0 72.0 72.9
FashionNet [1] 53.2 72.5 76.4 77.0 79.0 80.0
Corbiére et al. [27] | 39.0 T1.8 78.1 81.6 83.8 85.6
SCCapsNet (ours) | 32.1 724 81.8 86.3 89.2 90.9
RCCapsNet (ours) | 33.9 75.2 84.6 88.6 91.0) 92.6

HDC 29 62.1
VAM [28] 66.6
BIER [20) 76.9
HTL [19] 0.9

A-BIER [20] 3.1
ABE [21] 87.3
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Category Name | Number of Number of
Unique Items | Total Items

Blouse/Shirts 697 2.094
R esu ltS Tees/ Tanks 673 2.955
Dresses 624 1.091

Shorts 246 988

Sweaters 212

. 73
¢ Ablatlon Stlldy 1. .Tm.'k{rtﬂff.‘{mt:-; 195 %4

» Category-specific comparison:

30

cnl ¢

Models Category Top-1 | Top-10 | Top-20 | Top-30 | Top-40 | Top-50
(%) (%) (%) (%) (%) (%)
Blouse/Shirts 36.3 T4.8 82.5 86.4 88.6 90.6
Tees/Tanks 20.0 64.1 75.9 82.7 86.3 88.5
- . Dresses 24.8 6bo.4 70.4 %1.8 %5.9 xX.0
SCCepsiel Shorts 254 | 66.1 78.5 83.8 88.3 90.5
Sweaters 27.5 69.3 =().4 84.2 6.5 35.6
Jackets/Coats | 34.5 75.2 84.2 577 80.7 92.3
Blouse/Shirts | 39.7 79.5 86.8 89.5 91.3 92.9
Tees/Tanks 35.1 75.5 83.3 86.8 89.0 90.8
. Dresses 31.9 T3.3 %4.9 =0.0 91.2 92.4
RCCapset Shorts 273 | 69.2 80.4 86.6 89.7 92.5
Sweaters 27.6 69.8 ®().8 %5.0 5.3 39.8
Jackets/Coats | 36.5 75.2 84.8 90.5 92.8 94.5
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Results

» Ablation study 2:

» Category classification comparison:

- with the Baseline study:

Models + the required | Top-3 | Top-5
side information (if any) | (%) (%)
FashionNet + 100 A + L 47.38 | 70.57
FashionNet + 500 A + L h7.44 | 77.39
FashionNet + 1000 A + J 72.30 | 81.52
FashionNet + 1000 A + P 75.34 | B4.87
FashionNet + 1000 A + L | 82.58 | 90.17
SCCapsNet-CLS [ours) 83.18 | B9.83
RCCapsNet-CLS [ours) 85.12 | 91.41
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Results

» Ablation study 2:

» Category classification comparison:

* with the SOTA:

Osman Furkan Kinli, Thesis Defense

Side Information (SI) | Top-3 | Top-5
Architectures Backbone Extra Module (EM) | (%) (%)
WTBI [25] AlexNet [54] Category-specific 43.73 | 66.26
Similarity (SI)
DARN |[26] Custom NiN [55] | Visual Similarity (SI) 59.48 | 79.58
FashionNet [1] VGG-16 [39] Landmark 8258 | 90.17
Information (SI)
SCCapsNet-CLS CapsNet [4] No SI / EM Used 83.18 | 89.83
{ours)
RCCapsNet-CLS CapsNet [4] No SI / EM Used 85.12 | 91.41
{ours)
Corbiére et al. [27] ResNet50 [6] Buag-of-words 86.30 | 92.80
Deseriptors (EM)
Lu et al. [57) VGG-16 [39] Dynamie 86.72 | 92.51
Branching (EM)
Wang et al. [58] VGG-16 [39] Two Altention 90.99 | 95.78
Modules (EM)
Liu et al. [59] VGG-16 [39] Single Attention 91.16 | 96.12

Module (EM)
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Conclusion

» To the best of our knowledge, nobody attacks to

* Any information retrieval task

* Any fashion-related task

* Any task using ImageNet-sized data set

* Any task using a data set with 6-digit number of samples

by using Capsule Networks so far.
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Conclusion

* In this thesis, we show that

» Capsule Networks can be designed as Triplet-based to learn
the similarity between the images.

» Employing more powerful feature extraction methods for
Capsule inputs improves the performance of Capsules
significantly.
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Conclusion

* In this thesis, we also show that

 Capsule Networks can achieve even better results than
CNN-based architectures that use different side information
or extra module to recover pose configuration of the objects.

» Capsule Networks can get comparable results to the SOTA
architectures by using only images and with only half of the
parameters in the SOTA architectures.
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